Morphoanatomy and physiology of Swietenia macrophylla in different light environments: Insights into its invasive ability in the Philippines

##plugins.themes.bootstrap3.article.main##

REGULOS NOLASCO AGOTO JR.
JONATHAN OGAYON HERNANDEZ
BYUNG BAE PARK

Abstract

Abstract. Agoto Jr. RNA, Hernandez JO, Park BB. 2024. Morphoanatomy and physiology of Swietenia macrophylla in different light environments: Insights into its invasive ability in the Philippines. Biodiversitas 25: 257-263. Evidence supporting Swietenia macrophylla G.King's invasive ability is primarily inferential to date. The present study analyzed the variation in morphoanatomical and physiological traits of the species between shaded and sun-exposed environments to provide insights into its invasive ability in the Philippines. The variations in leaf area, seedling height, leaf pH, biomass, parenchyma and collenchyma cell thickness, lumen area of xylem vessels, stomatal conductance, and leaf relative water content were analyzed between shaded and sun-exposed light conditions. While stem and leaf biomass did not differ between the two light conditions, root biomass was 27% higher in the shaded than in the sun-exposed seedlings. Leaf pH was substantially lower in the shaded than in the sun-exposed condition. The vessel lumen area in both leaf and root was significantly larger in shaded than in sun-exposed condition by 10-15%. The parenchyma of seedlings in the shady area of the forest was thicker (c.a., 1-2 layers) compared to those in the well-lit environment, particularly in the leaf and root. While stomatal conductance was similar between the two light environments, shaded ones had a much larger leaf relative water content, up by 9-12%. Overall, we found significant morphoanatomical and physiological variations between shaded and sun-exposed seedlings, indicating invasive species' light-capture strategy and providing insights into S. macrophylla's invasive potential in the Philippines.

##plugins.themes.bootstrap3.article.details##

References
Assad R, Rashid I, Reshi ZA, Sofi IA. 2021. Invasiveness traits help Amaranths to invade Kashmir Himalaya, India. Trop Ecol 62: 209–217. DOI: 10.1007/s42965-020-00129-y
Boursiac Y, Pradal C, Bauget F, Lucas M, Delivorias S, Godin C, Maurel C. 2022. Phenotyping and modeling of root hydraulic architecture reveal critical determinants of Axial Water Transport. Plant Physiol 190 (2): 1289–1306. DOI: 10.1093/plphys/kiac281
Chiu JH, Chong KY, Lum, SK, Wardle DA. 2023. Trends in the direction of Global Plant Invasion Biology research over the past two decades. Ecol Evol 13 (1). DOI: 10.1002/ece3.9690
Cio? M, Paw?owska B. 2020. Leaf response to different light spectrum compositions during micropropagation of Gerbera Axillary shoots. Agronomy 10 (11): 1832. DOI: 10.3390/agronomy10111832
Coracero EE. 2023. Distribution and management of the invasive Swietenia macrophylla King (Meliaceae) at the foot of a protected area in Luzon Island, Philippines. J Zool Bot Gard 4 (3): 637–647. DOI: 10.3390/jzbg4030045
Daly EZ, Chabrerie O, Massol F, Facon B, Hess MCM, Tasiemski A, Grandjean F, Chauvat M, Viard F, Forey E, Folcher L, Buisson E, Boivin T, Baltora?Rosset S, Ulmer R, Gibert P, Thiébaut G, Pantel JH, Heger T, … Renault D. 2023. A synthesis of biological invasion hypotheses associated with the introduction–naturalisation–invasion continuum. Oikos 2023(5). DOI: 10.1111/oik.09645
Forero-Montaña J, Zimmerman JK, González E, Wadsworth F, Ward S, Meléndez Ackerman EJ, Santiago LE, Lee CA. 2021. Developing a growth and yield model for planted big-leaf mahogany (Swietenia macrophylla king) at advanced age in subtropical moist forest in Puerto Rico. 0 0 5: 100113. DOI: 10.1016/j.tfp.2021.100113
Funk JL. 2013. The physiology of invasive plants in low-resource environments. Conserv Physiol 1 (1). DOI: 10.1093/conphys/cot026
Galano JB, Rodriguez LJV. 2021. Exotic mahogany leaf litter hinders growth of Philippine native tree seedlings. PNIE 2 (2): 76-81. DOI: 10.22920/PNIE.2021.2.2.76
Grogan J, Landis RM, Free CM, Schulze MD, Lentini M, Ashton MS. 2014. Big-leaf mahogany Swietenia macrophylla population dynamics and implications for sustainable management. J Appl Ecol 51(3): 664–674. DOI: 24032529
Hernandez JO, Park BB. 2022. The leaf trichome, venation, and mesophyll structural traits play important roles in the physiological responses of oak seedlings to water-deficit stress. Int J Mol Sci 23 (15): 8640. DOI: 10.3390/ijms23158640
Herrera-Feijoo RJ, Torres B, López-Tobar R, Tipán-Torres C, Toulkeridis T, Heredia-R M, Mateo RG. 2023. Modelling climatically suitable areas for mahogany (Swietenia macrophylla king) and their shifts across Neotropics: The role of Protected Areas. Forests 14 (2): 385. DOI: /10.3390/f14020385
Lee K-A, Kim Y-N, Kantharaj V, Lee YB, Woo SY. 2023. Seedling growth and photosynthetic response of Pterocarpus indicus l. to shading stress. Plant Signal Behav 18 (1). DOI: 10.1080/15592324.2023.2245625
Liu D, Chen L, Chen C, Zhou Y, Xiao F, Wang Y, Li Q. 2022. Effect of plant VOCs and light intensity on growth and reproduction performance of an invasive and a native Phytolacca species in China. Ecol Evol 12 (3). DOI: 10.1002/ece3.8522
Ma R, Luo J, Wang W, Fu Y. 2023. Changes in the physiological activity of parenchyma cells in Dalbergia odorifera xylem and its relationship with Heartwood Formation. BMC Plant Biol 23 (1). DOI: 10.1186/s12870-023-04592-2
Martinez?Garcia JF, Rodriguez?Concepcion M. 2023. Molecular mechanisms of shade tolerance in plants. New Phytol 239 (4): 1190–1202. DOI: 10.1111/nph.19047
Medina E, Cuevas E, Lugo AE, Terezo E, Jiménez-Osornio J, Macario-Mendoza PA, Montañez P. 2014. Conservative nutrient use by big-leaf mahogany (Swietenia macrophylla king) planted under contrasting environmental conditions. Rev Arvore 38 (3): 479–488. DOI: 10.1590/s0100-67622014000300010
Moghadamtousi S, Goh B, Chan C, Shabab T, Kadir H. 2013. Biological activities and phytochemicals of Swietenia macrophylla king. Molecules 18 (9): 10465–10483. DOI: 10.3390/molecules180910465
Moodley D, Geerts S, Richardson DM, Wilson JR. 2013. Different traits determine introduction, naturalization and invasion success in woody plants: Proteaceae as a test case. PLoS One 8 (9). DOI: 10.1371/journal.pone.0075078
Moravcová L, Pyšek P, Jarošík V, Pergl J. 2015. Getting the right traits: Reproductive and dispersal characteristics predict the invasiveness of herbaceous plant species. PLoS One 10 (4). DOI: 10.1371/journal.pone.0123634
Mukaromah AS, Purwestri YA, Fujii Y. 2016. Determination of allelopathic potential in mahogany (Swietenia macrophylla king) leaf litter using sandwich method. Indones J Biotechnol 21 (2): 93. DOI: 10.22146/ijbiotech.16456
Perez-Harguindeguy N, Diaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, ...Cornelissen JHC. 2013. New handbook for standardised measurement of plant functional traits worldwide. Aust. Bot. 61: 167–234. DOI: 10.1071/BT12225
Pramono AA, Syamsuwida D, Putri KP. 2019. Variation of seed sizes and its effect on germination and seedling growth of mahogany (Swietenia macrophylla). Biodiversitas Journal of Biological Diversity 20(9). DOI: 10.13057/biodiv/d200920
Pyšek P, Hulme PE, Simberloff D, Bacher S, Blackburn TM, Carlton JT, Dawson W, Essl F, Foxcroft LC, Genovesi P, Jeschke JM, Kühn I, Liebhold AM, Mandrak NE, Meyerson LA, Pauchard A, Pergl J, Roy HE, Seebens H, … Richardson DM. 2020. Scientists’ warning on invasive alien species. Biol Rev 95 (6): 1511–1534. DOI: 10.1111/brv.12627
Qi Y, Wei W, Chen C, Chen L. 2019. Plant root-shoot biomass allocation over diverse biomes: A global synthesis. Glob Ecol Conserv 18. DOI: 10.1016/j.gecco.2019.e00606
Ren G, Yang H, Li J, Prabakaran K, Dai Z, Wang X, Jiang K, Zou CB, Du D. 2020. The effect of nitrogen and temperature changes on Solidago canadensis phenotypic plasticity and fitness. Plant Species Biol 35 (4): 283–299. DOI: 10.1111/1442-1984.12280
Rindyastuti R, Hapsari L, Byun C. 2021. Comparison of ecophysiological and leaf anatomical traits of native and invasive plant species. J Ecol Environ 45 (1). DOI: 10.1186/s41610-020-00174-7
Stricker KB, Hagan D, Flory SL. 2015. Improving methods to evaluate the impacts of plant invasions: Lessons from 40 years of research. AoB PLANTS 7. DOI: 10.1093/aobpla/plv028
Utari VF, Chozin MA, Hapsari DP, Ritonga AW. 2023. Morphophysiological responses and tolerance of various sweet corn (Zea mays convar. saccharata) hybrids to shade stress. Biodiversitas 24 (8). DOI: 10.13057/biodiv/d240825
Yang B, Cui M, Du Y, Ren G, Li J, Wang C, Li G, Dai Z, Rutherford S, Wan JS, Du D. 2022. Influence of multiple global change drivers on Plant Invasion: Additive effects are uncommon. Front Plant Sci 13. DOI: 10.3389/fpls.2022.1020621
Yang X, Lu M, Wang Y, Wang Y, Liu Z, Chen S. 2021. Response mechanism of plants to drought stress. Horticulturae 7 (3): 50. DOI: 10.3390/horticulturae7030050
Yin J, Fridley JD, Smith MS, Bauerle TL. 2015. Xylem vessel traits predict the leaf phenology of native and non?native understorey species of temperate deciduous forests. Funct Ecol 30(2): 206–214. DOI: 10.1111/1365-2435.12476
Youn WB, Hernandez JO, Park BB. 2021. Effects of Shade and Planting Methods on the Growth of Heracleum moellendorffii and Adenophora divaricata in Different Soil Moisture and Nutrient Conditions. Plants 10 (10). DOI: 10.3390/plants10102203
Zadworny M, Comas LH, Eissenstat DM. 2018. Linking fine root morphology, hydraulic functioning and shade tolerance of trees. Ann Bot 122 (2): 239–250. DOI: 10.1093/aob/mcy054
Zhang Z, Liu Y, Brunel C, Van Kleunen, M. 2020. Soil-microorganism-mediated invasional meltdown in plants. Nat Ecol Evol 4 (12): 1612–1621. DOI: 10.1038/s41559-020-01311-0
Zhu J, Jiang L, Chen L, Jin X, Xing C, Liu J, Yang Y, He Z. 2023. Tree seedling growth allocation of Castanopsis Kawakamii is determined by seed-relative positions. Front Plant Sci 14. DOI: 10.3389/fpls.2023.1099139.