Assessment of the current condition and ontogenetic structure of the populations of Leontice incerta Pall. (Berberidaceae) in the Kyzyl-Kum Desert, Uzbekistan

##plugins.themes.bootstrap3.article.main##

NODIRJON BOBOKANDOV
ZEBUNISSO NOMOZOVA
YIGITALI TASHPULATOV
ELDOR ISOMOV
AKBAR AKHMEDOV

Abstract

Abstract. Bobokandov N, Nomozova Z, Tashpulatov Y, Isomov E, Akhmedov A. 2024. Assessment of the current condition and ontogenetic structure of the populations of Leontice incerta Pall. (Berberidaceae) in the Kyzyl-Kum Desert, Uzbekistan. Biodiversitas 25: 2757-2764. The desert ecosystems of central Asia, including Uzbekistan, have a rich biodiversity and unique plant communities. High human pressure and long drought periods due to climate change have caused habitat destruction in these areas and a parallel crisis in vegetation cover. This study aimed to estimate the current population of Leontice incerta Pall., primarily distributed in the Kyzyl-Kum Desert, Uzbekistan. This focal species grew under climatic changes and human pressure in the Kyzyl-Kum Desert. The study identified five populations of L. incerta in the Kyzyl-Kum Desert. All 5 populations were estimated and measured by delta-omega and the population spectrum was determined. In the plant community, there are mostly dominated by Asteraceae (6 species), followed by Fabaceae (5 species), Amaranthaceae (4 species), Lamiaceae (4 species), Apiaceae (3 species), and other families. The plant communities consist of 49 species, including 1 species of tree, 6 species of shrubs, 6 species of semi-shrubs, 26 species of perennial herbs, and 10 species of annual herbs. The ontogenetic structure was incomplete, that is, it did not include all age groups due to biological features and harsh conditions. At all sites, the population density was low with most populations classified as young ontogenetic structures. The results will make it possible to understand estimating the current state of L. incerta. It indicated this species might, soon, become rare in the wild, therefore conservation and protection areas for this focal species are necessary.

##plugins.themes.bootstrap3.article.details##

References
Abduraimov ?S, Kovalenko IN, Makhmudov AV, Allamurotov AL. & Mavlanov BJ. 2022. Ontogenetic structure of coenopopulations of Allium pskemense (Amaryllidaceae) in Uzbekistan. Biosystems Diversity, 30(1), 88-94. DOI: org/10.15421/012209.
Akhmedov A, Rog I, Bachar, A., Shomurodov H, Nasirov M. & Klein T. 2021. Higher risk for six endemic and endangered Lagochilus species in Central Asia under drying climate. Perspect. Plant Ecol. Evol. Syst., 48, 125586. DOI: 10.1016/j.ppees.2020.125586.
Akhmedov A. 2017. Assessment of the Current Condition of Populations of the Red List species Lagochilus proskorjakovii Ikram and Lagochilus olgae R.Kam. (Lamiaceae) in Nuratau mountain ridge, Uzbekistan. Report of UNU-LRT. P-8. DOI: 10.13140/RG.2.2.13277.56807.
Akhmedov HA, Nomozova Z, Umurzakova Z, Turdiboev O, Atayeva S. & Jumayev N. 2022. Assessment of the current condition of populations of the red list species Salvia submutica Botsch. & Vved. (Lamiaceae Lindl.) in Nuratau mountain ridge, Uzbekistan. Ekológia (Bratislava), 41(4), 322?328. DOI: 10.2478/eko-2022-0033.
Akramov DKh, Mamadalieva NZ, Porzel A, Hussain H, Dube M, Akhmedov AK, Altyar AE, Ashour ML. & Wessjohann LA. 2021. Sugar-containing compounds and biological activities of Lagochilus setulosus. Molecules, 26(6), 1755. DOI: 10.3390/molecules26061755.
Connor EW, Hawkes CV. 2018. Effects of extreme changes in precipitation on the physiology of C4 grasses. Oecologia 188 (2), 355–365. DOI: 10.1007/s00442-018-42125.
Chupov VS. 2018. Variability of Indicators and Processes in a Long Structured Phylogenetical Branch of Angiosperms. Part 2. Berberidaceae and Ranunculaceae Chain Links. Biology Bulletin Reviews, 8, 89-103. DOI: 10.1134/S2079086418020044.
Dantas BF, Moura MS, Pelacani CR, Angelotti F, Taura TA, Oliveira GM, et al. 2020. Rainfall, not soil temperature, will limit the seed germination of dry forest species with climate change. Oecologia 192 (2), 529–541. DOI.ORG/10.1007/S00442-019-04575-X.
Harris I, Jones PD, Osborn TJ. & Lister DH. 2014. Updated high-resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. International Journal of Climatology, 34(3), 623–642. DOI: 10.1002/joc.3711.
Khalimov F, Rakhimov M, Usanov U, Khamzaev R, & Abdullaev E. 2023. Composition and structure of the entomofauna of Ferula (Ferula kuhistanica) in different sections of the Zarafshan Ridge. Journal of the Entomological Research Society, 25(2), 275-286. DOI: org/10.51963/jers.2023.86.
Lemoine NP, Griffin-Nolan RJ, Lock AD, Knapp AK. 2018. Drought timing, not previous drought exposure, determines sensitivity of two shortgrass species to water stress. Oecologia 188 (4), 965–975. DOI: org/10.1007/s00442-018-4265-5.
Mitchell D, Williams RB, Hudson D, Johnson P, 2017. A Monte Carlo analysis on the impact of climate change on future crop choice and water use in Uzbekistan. Food Secur. 9 (4), 697–709. DOI: 10.1007/s12571-017-0690-2.
Nurullayeva N, Haydarov K, Umurzakova Z, & Safarova D. 2021. Growth and development of Lycium barbarum L. in the environment of Samarkand in Uzbekistan. Plant Science Today, 8(2), 278-282. DOI: org/10.14719/pst.2021.8.2.919.
Peng Y, Chen SB, Liu Y, Chen SL, Xiao PG. 2006. A pharmacophylogenetic study of the Berberidaceae (s.l.). Acta Phytotaxonomica Sinica. 44(3):241–257. DOI: 10.1360/aps040149.
Rahmonov O, Majgier L, Andrejczuk W, Banaszek J, Karkosz D, Parusel T, Szymczyk, A. 2013. Landscape diversity and biodiversity of Fann Mountains (Tajikistan). Ekologia´ (Bratislava) 32 (4), 388–395. DOI: 10.2478/eko-2013-0037.
Rakhimova NK, Shomurodov KF, Sharipova VK, Saitjanova US. & Sadinov JS. 2023. Using biodiversity indices to assess the current state of tugai vegetation of the Amu Darya River, Uzbekistan. Biodiversitas Journal of Biological Diversity, 24(1). DOI: 10.13057/biodiv/d240153.
Rosati L, Coppi A, Farris E, Fascetti S, Becca G, Peregrym M. & Selvi F. 2019. The genus Gymnospermium (Berberidaceae) in Italy: identity and relationships of the populations at the western limit of the genus range. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 153(6), 796-808. DOI: 10.1080/11263504.2018.1549613.
Saribaeva SU. & Akhmedov A. 2016. The Ontogenetic Structure and Coenopopulation of Lagochilus Vvedenskyi (Lamiaceae) in Kyzylkum Desert (Uzbekistan). International Journal of Science and Research, 5, 1530-1533. DOI: 10.21275/ART20161812.
Shomurodov, H.F., 2018. Forage plants of Kyzyl-Kum and prospects for their use. Resume of Dissertation for Doctor of Biological Sciences, Tashkent, Uzbekistan. 4-104 p.
Sun T, Brodholt JP, Li Y. & Vo?adlo L. 2018. Melting properties from ab initio free energy calculations: Iron at the Earth’s inner-core boundary. Physical Review B, 98(22), 224301. DOI.org/10.1103/PhysRevB.98.224301.
Osmanova GO. & Zhivotovsky LA. 2020. Ontogenetisheskij spektr kak indi-cator sostojanija rastenij [The ontogenetic spectrum as an indicator of the status of plant populations]. Biology Bulletin, 47, 141–148 (in Russian). DOI:10.1134/S1062359020020053.
Braun-Blanquet J. 1965. Plant Sociology: The Study of Plant Communities. Hafner, London.
Coenopopulations plants (basic concepts and structure). 1976. World Scientific.
Uranov AA. & Smirnov? OV. 1969. Classification and main features of the development of populations of perennial plants (in Russian). Bulletin MOIP, 74(2), 119?134.
Zaugolnova LB. 1994. Population structure of seed plants and problems of their monitoring. St. Petersburg.