Characterization of melon (var Sky Rocket) peel pectin using microwave-assisted extraction at different powers and extraction times

##plugins.themes.bootstrap3.article.main##

NUR AINI
IFTITAH SYAWALIYAH HERDAWAN
BUDI SUSTRIAWAN
RETNO SETYAWATI
RULLY EKO KUSUMA KURNIAWAN
NAGEEB MOHAMMED SULIMAN
HADANA SABILA ARSYISTAWA
INDARTO

Abstract

Abstract. Aini N, Herdawan IS, Sustriawan B, Setyawati R, Kurniawan REK, Suliman NM, Arsyistawa HS, Indarto. 2024. Characterization of melon (var Sky Rocket) peel pectin using microwave-assisted extraction at different powers and extraction times. Biodiversitas 25: 1528-1535. Pectin is a heteropolysaccharide molecule that can be used as a thickening agent due to its ability to bind large amounts of water. Pectin can be obtained from fruit peels containing pectic compounds, one of which is melon. A modern extraction technique such as Microwave-Assisted Extraction (MAE) is appropriate because it requires a relatively short time and lower costs. The objective of the research was to determine the effect of power and time on the pectin extraction from melon peel using microwave-assisted extraction. Sample preparation was done by drying the melon peel and then crushing and sieving it to produce melon peel powder. The powder was extracted using combinations of various microwave power of 180 (D1), 270 (D2), and 360 (D3) watts and extraction time variations of 3 (W1), 5 (W2), and 7 (W3) minutes. The results showed that the best treatment combination was extraction using microwave power of 270 watts for 3 minutes, which produced melon peel pectin with a yield of 6.4%, moisture content of 8.85%, ash content of 7.73%, equivalent weight of 1,810.07 mg, methoxyl content of 2.46%, galacturonic acid content of 95.74%, and degree of esterification of 22.02%. Melon peel, usually considered waste, can be used more optimally as a source of pectin.

##plugins.themes.bootstrap3.article.details##

References
Ahmed S, Belal M, Sikder H. 2019. Extraction, characterization and application of three varieties of citrus limon L. pectin in jelly product. Food and Applied Bioscience Journal 7 (1): 31–50.
Cai R, Pan S, Li R, Xu X, Pan S, Liu F. 2022. Curcumin loading and colon release of pectin gel beads: Effect of different de-esterification method. Food Chemistry 389: 133130. DOI: 10.1016/j.foodchem.2022.133130.
Chandel V, Biswas D, Roy S, Vaidya D, Verma A, Gupta A. 2022. Current advancements in pectin?: Extraction, properties and multifunctional applications. Foods 2022 (11): 2683.
Chen X, Yang J, Shen M, Chen Y, Yu Q, Xie J. 2022. Structure, function and advance application of microwave-treated polysaccharide: A review. Trends in Food Science & Technology 123 (235): 198–209. DOI: 10.1016/j.tifs.2022.03.016.
Christiaens S, Van Buggenhout S, Houben K, Jamsazzadeh Kermani Z, Moelants KRN, Ngouémazong ED, Van Loey A, Hendrickx MEG. 2016. Process–structure–function relations of pectin in food. Critical Reviews in Food Science and Nutrition 56 (6): 1021–1042. DOI: 10.1080/10408398.2012.753029.
Costa KPB, Reichembach LH, de Oliveira Petkowicz CL. 2022. Pectins with commercial features and gelling ability from peels of Hylocereus spp. Food Hydrocolloids 128: 107583. DOI: 10.1016/j.foodhyd.2022.107583.
Djaeni M, Ariani N, Hidayat R, Utari FD. 2017. Ekstraksi antosianin dari kelopak bunga Rosella (Hibiscus Sabdariffa L.) berbantu ultrasonik: Tinjauan aktivitas antioksidan. Jurnal Aplikasi Teknologi Pangan 6 (3): 148–151. DOI: 10.17728/jatp.236.
Dong H, Dai T, Liang L, Deng L, Liu C, Li Q, Liang R, Chen J. 2021. Physicochemical properties of pectin extracted from navel orange peel dried by vacuum microwave. LWT 151: 112100. DOI: 10.1016/j.lwt.2021.112100.
Fibrianto K, Anggara M, Wulandari ES. 2020. The effect of sucrose and citric acid concentration of candi banana peels jam on physico-chemical and sensory characteristics. IOP Conference Series: Earth and Environmental Science 475 (1). DOI: 10.1088/1755-1315/475/1/012018.
Gawkowska D, Cybulska J, Zdunek A. 2018. Structure-related gelling of pectins and linking with other natural compounds: A review. Polymers 10: 762. DOI: 10.3390/polym10070762.
Golbargi F, Gharibzahedi SMT, Zoghi A, Mohammadi M, Hashemifesharaki R. 2021. Microwave-assisted extraction of arabinan-rich pectic polysaccharides from melon peels: Optimization, purification, bioactivity, and techno-functionality. Carbohydrate Polymers 256: 117522. DOI: 10.1016/j.carbpol.2020.117522.
Hosseini SS, Khodaiyan F, Kazemi M, Najari Z. 2019. Optimization and characterization of pectin extracted from sour orange peel by ultrasound assisted method. International Journal of Biological Macromolecules 125: 621–629. DOI: 10.1016/j.ijbiomac.2018.12.096.
Hosseini SS, Khodaiyan F, Yarmand MS. 2016. Optimization of microwave assisted extraction of pectin from sour orange peel and its physicochemical properties. Carbohydrate Polymers 140: 59–65. DOI:10.1016/j.carbpol.2015.12.051.
Koh PC, Leong CM, Noranizan MA. 2014. Microwave-assisted extraction of pectin from jackfruit rinds using different power levels. International Food Research Journal 21 (5): 2091–2097.
Latupeirissa J, Fransina EG, Tanasale MFJDP, Batawi CY. 2019. Extraction and characterization of pectin from the oranges peel of Kisar (Citrus sp.). J. Chem. Res 7 (1): 61–68.
Liu H, Dai T, Chen J, Liu W, Liu C, Deng L, Liang R. 2022. Extraction, characterization and spontaneous gelation mechanism of pectin from Nicandra physaloides (Linn.) Gaertn seeds. International Journal of Biological Macromolecules 195: 523–529. DOI: 10.1016/j.ijbiomac.2021.12.032.
Maran JP, Swathi K, Jeevitha P, Jayalakshmi J, Ashvini G. 2015. Microwave-assisted extraction of pectic polysaccharide from waste mango peel. Carbohydrate Polymers 123: 67–71. DOI: 10.1016/j.carbpol.2014.11.072.
Muñoz-Almagro N, Montilla A, Villamiel M. 2021. Role of pectin in the current trends towards low-glycaemic food consumption. Food Research International 140. DOI: 10.1016/j.foodres.2020.109851.
Muñoz-Almagro N, Valadez-Carmona L, Mendiola JA, Ibáñez E, Villamiel M. 2019. Structural characterisation of pectin obtained from cacao pod husk. Comparison of conventional and subcritical water extraction. Carbohydrate Polymers 217: 69–78. DOI: 10.1016/j.carbpol.2019.04.040.
Nuh M. 2017. Pengaruh suhu dan lama ekstraksi terhadap mutu pektin kulit pisang kepok. Wahana Inovasi 6 (2): 144–148.
Ozcelik M, Ambros S, Morais SIF, Kulozik U. 2020. Storage stability of dried raspberry foam as a snack product: Effect of foam structure and microwave-assisted freeze drying on the stability of plant bioactives and ascorbic acid. Journal of Food Engineering 270: 109779. DOI: 10.1016/j.jfoodeng.2019.109779.
Patience NA, Schieppati D, Boffito DC. 2021. Continuous and pulsed ultrasound pectin extraction from navel orange peels. Ultrasonics Sonochemistry 73: 105480. DOI: 10.1016/j.ultsonch.2021.105480.
Ponmurugan K, Al-Dhabi NA, Maran JP, Karthikeyan K, Moothy IG, Sivarajasekar N, Manoj JJB. 2017. Ultrasound assisted pectic polysaccharide extraction and its characterization from waste heads of Helianthus annus. Carbohydrate Polymers 173: 707–713. DOI: 10.1016/j.carbpol.2017.06.018.
Roque AM, Montinola D, Geonzon L, Matsukawa S, Lobarbio CFY, Taboada EB, Bacabac RG. 2022. Rheological elucidation of the viscoelastic properties and network interaction of mixed high-methoxyl pectin and kappa-carrageenan gels. Food Hydrocolloids 129: 107647. DOI: 10.1016/j.foodhyd.2022.107647.
Su DL, Li PJ, Quek SY, Huang ZQ, Yuan, YJ, Li GY, Shan Y. 2019. Efficient extraction and characterization of pectin from orange peel by a combined surfactant and microwave assisted process. Food Chemistry 286: 1–7. DOI: 10.1016/j.foodchem.2019.01.200.