Utilizing the diversity of arbuscular mycorrhizal fungi and sweet potato leaf litter for the growth and production of andrographolide compounds in Andrographis paniculata

##plugins.themes.bootstrap3.article.main##

SUHARNO
AYU CAHYANINGSIH
PUGUH SUJARTA
TRI GUNAEDI
IGN. JOKO SUYONO
DIRK Y. P. RUNTUBOI
SUPENI SUFAATI

Abstract

Abstract. Suharno, Cahyaningsih A, Sujarta P, Gunaedi T, Suyono IJ, Runtuboi DYP, Sufaati S. 2024. Utilizing the diversity of arbuscular mycorrhizal fungi and sweet potato leaf litter for the growth and production of andrographolide compounds in Andrographis paniculata. Biodiversitas 25: 1427-1435. This research aims to determine the effect of AMF diversity and the leaf litter of sweet potato on the growth and production of andrographolide compounds in sambiloto (Andrographis paniculata Nees.). Factorial analysis in a completely randomized experimental design with two factors and six replicates was used in this research. The factors consisted of the AMF inoculation (non-mycorrhizal, the inoculation with Glomus sp1, Glomus sp2, and Glomus aggregatum) and the addition of sweet potato leaf litter (without litter, with 5, 10, and 15 g per polybag). The results showed that AMF inoculation significantly increased plant height, number of leaves, leaf area, and biomass. Likewise, the addition of sweet potato leaf litter also affected the plant growth in all parameters. The combination between AMF inoculation and leaf litter addition contributes positively to the overall plant growth. The highest growth was noted in the plant inoculated with Glomus sp2 grown in the media added with 10 g of leaf litter per polybag. The inoculation of an indigenous AMF, Glomus sp2, could enhance the andrographolide compound content by 3.65%. AMF, thus, has the potential to improve the growth and content of andrographolide compounds in A. paniculata.

##plugins.themes.bootstrap3.article.details##

References
Akhtar MS, Siddiqui ZA, Wiemken A. 2011. Arbuscular mycorrhizal fungi and Rhizobium to control plant fungal diseases In: Alternative farming systems, biotechnology, drought stress, and ecological fertilization. Series Sustain. Agric. Rev 6: 390. DOI: 10.1007/978-94-007-0186-19.
Anand K, Pandey GK, Kaur T, Pericak O, Olson C, Mohan R, Akansha K, Yadav A, Devi R, Kour D, Rai AK, Kumar M, Yadav AN. 2022. Arbuscular mycorrhizal fungi as a potential biofertilizer for agricultural sustainability. J. Appl Biol Biotech 10 (1): 90–107. DOI: 10.7324/JABB.2022.10s111.
Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang L. 2019. Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Front. Plant Sci 10: 1068. DOI: 10.3389/fpls.2019.01068.
Beslemes D, Tigka E, Roussis I, Kakabouki I, Mavroeidis A, Vlachostergios D. 2023. Effect of arbuscular mycorrhizal fungi on nitrogen and phosphorus uptake efficiency and crop productivity of two-rowed barley under different crop production systems. Plants. 12: 1908. DOI: 10.3390/plants12091908.
Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N. 1996. Working with mycorrhizas in forestry and agriculture. Australian Centre for International Agricultural Research. Canberra, Australia. pp: 173193.
Chakrabortya K, Lushaia J, Dasb AR, Sahab AK, Dasa P. 2019. Seasonal colonization of arbuscular mycorrhiza in Andrographis paniculata (Burm.f.) Nees. Mycorrhiza News 31(2): 1–8.
Colard A, Angelard C, Sanders IR. 2011. Genetic exchange in an arbuscular mycorrhizal fungus results in increased rice growth and altered mycorrhiza-specific gene transcription. Appl Environ Microbiol 77(18): 6510-6515.
Duc NH, Vo AT, Haddidi I, Daood H, Posta K. 2021. Arbuscular mycorrhizal fungi improve tolerance of the medicinal plant Eclipta prostrata (L.) and induce major changes in polyphenol profiles under salt stresses. Front. Plant Sci 11: 612299. DOI: 10.3389/fpls.2020.612299.
Etesami H, Jeong BR, Glick BR. 2021. Contribution of arbuscular mycorrhizal fungi, phosphate–solubilizing bacteria, and silicon to P uptake by plant. Front Plant Sci 12: 699618. DOI: 10.3389/fpls.2021.699618.
Hao Z, Xie W, Jiang X, Wu Z, Zhang X, Chen B. 2019. Arbuscular mycorrhizal fungus improves Rhizobium–Glycyrrhiza seedling symbiosis under drought stress. Agron 9: 572. DOI:10.3390/agronomy9100572.
Ischak NI, Aman LO, Hasan H, La Kilo A, Asnawi A. 2023. In silico screening of Andrographis paniculata secondary metabolites as anti-diabetes mellitus through PDE9 inhibition. Res Pharm Sci 18 (1): 100–111. DOI: 10.4103/1735-5362.363616.
Jayakumar T, Hsieh C.-Y, Lee J.-J, Sheu J.-R. 2013. Experimental and clinical pharmacology of Andrographis paniculata and its major bioactive phytoconstituent andrographolide. Evid. Based Complementary Altern. Med. 2013: 846740, DOI: 10.1155/2013/846740.
Jerbi M, Labidi S, Laruelle F, Tisserant B, Jeddi FB, Sahraoui AL-H. 2022. Mycorrhizal biofertilization improves grain yield and quality of hulless Barley (Hordeum vulgare ssp. nudum L.) under water stress conditions. J. Cereal Sci 104: 103436. DOI: 10.1016/j.jcs.2022.103436.
Jezierska-Tys S, Weso?owska S, Ga??zka A, Joniec J, Bednarz J, Cierpia?a R. 2020. Biological activity and functional diversity in soil in diferent cultivation systems. Int J Environ Sci Technol 17: 4189–4204. DOI: 10.1007/s13762-020-02762-5.
Kaur S, Suseela V. 2020. Unraveling arbuscular mycorrhiza-induced changes in plant primary and secondary metabolome. Metabolites 10: 335. DOI: 10.3390/metabo10080335.
Khaliq A, Perveen S, Alamer KH, Haq ZUM, Rafique Z, Alsudays IM, Althobaiti AT, Saleh MA, Hussain S, Attia H. 2022. Arbuscular mycorrhizal fungi symbiosis to enhance plant–soil interaction. Sustainability 2022, 14, 7840. https://doi.org/ 10.3390/su14137840
Krisnarini, K., Rini, M. V., & Timotiwu PB. 2019. The growth of oil palm (Elaeis guineensis Jacq.) seedlings with the application of different arbuscular mycorrhiza fungi and various phosphorous dosages. J Trop Soil 23 (3): 117–124.
Kumar, A., & Verma, J.P. 2018. Does plant—microbe interaction confer stress tolerance in plants: a review?. Microbiol Res 207: 41–52.
León JD, Osorio NW. 2014. Role of litter turnover in soil quality in tropical degraded lands of Colombia. Sci World J 2014: 693981. DOI: 10.1155/2014/693981.
Liu S, Yang R, Peng X, Hou C, Ma J, Guo J. 2022a. Contributions of plant litter decomposition to soil nutrients in ecological tea gardens. Agric 12: 957. DOI: 10.3390/agriculture12070957.
Liu X, Chen S, Li, X, Yang Z, Xiong D, Xu C, Wanek W, Yang Y. 2022b. Soil warming delays leaf litter decomposition but exerts no effect on litter nutrient release in a subtropical natural forest over 450 days. Geoderma 427: 116139. DOI: 10.1016/j.geoderma.2022.116139.
Machiani MA, Javanmard A, Machiani RH, Sadeghpour A. 2022. Arbuscular mycorrhizal fungi and changes in primary and secondary metabolites. Plants 11: 2183. DOI: 10.3390/ plants11172183.
Marco S, Loredana M, Riccardo V, Raffaella B, Walter C, Luca N. 2022. Microbe-assisted crop improvement: a sustainable weapon to restore holobiont functionality and resilience. Hortic Res 9:uhac160. DOI:10.1093/hr/uhac160.
Medina A, Azcón R. 2010. Effectiveness of the application of arbuscular mycorrhiza fungi and organic amendments to improve soil quality and plant performance under stress conditions. J. Soil Sci. Plant Nutr 10 (3): 354–372.
Paravar A, Piri R, Balouchi H, Ma Y. 2023. Microbial seed coating: An attractive tool for sustainable agriculture. Biotechnol Rep 37: e00781. DOI: 10.1016/j.btre.2023.e00781.
Portes TA, de Araújo BRB, de Melo HC. 2022. Growth analysis, photosynthate partition, and nodulation in bean and soybean. Ciência Rural 52(10): e20210282. DOI: 10.1590/0103-8478cr20210282.
Prayudyaningsih R, Sari R. 2016. The application of arbuscular mycorrhizal fungi (AMF) and compost to improve the growth of teak seedlings (Tectona grandis Linn.f.) on limestone post-mining soil. Jurnal Penelitian Kehutanan Wallacea 5 (1): 37–46.
Radhika KP, Rodrigues BF. 2011. Influence of arbuscular mycorrhizal fungi on andrographolide concentration in Andrographis paniculata. Aust J Medical Herbal 23(1): 34-38.
Rasouli F, Nasiri Y, Hassanpouraghdam MB, Asadi M, Qaderi T, Trifa A, Dresler S, Szczepanek M. 2023. Seaweed extract and arbuscular mycorrhiza co-application affect the growth responses and essential oil composition of Foeniculum vulgare L. Sci Rep 13 (1): 11902. DOI: 10.1038/s41598-023-39194-3.
Rashidi S, Yousefi AR, Pouryousef M, Goicoechea N. 2022. Effect of Arbuscular mycorrhizal fungi on the accumulation of secondary metabolites in roots and reproductive organs of Solanum nigrum, Digitaria sanguinalis and Ipomoea purpurea. Chem. Biol. Technol. Agric 9: 23–34. DOI: 10.1186/s40538-022-00288-1.
Suharno, Sancayaningsih RP, Kasiamdari RS, Soetarto ES. 2021. The growth response of pokem (Setaria italica L.) inoculated with arbuscular mycorrhizal fungi (AMF) from tailings area. J Degrad Mining Land Manag 8 (4): 2873-2880. DOI: 10.15243/jdmlm.2021.084.2873.
Suharno, Soetarto ES, Sancayaningsih RP, Kasiamdari RS. 2017. Association of arbuscular mycorrhizal fungi (AMF) with Brachiaria precumbens (Poaceae) in tailing and its potential to increase the growth of maize (Zea mays). Biodiversitas 18 (1): 433-441. DOI: 10.13057/biodiv/d180157.
Suharno, Tanjung RHR, Sufaati S. 2020. Arbuscular mycorrhizal fungi accelerate the rehabilitation of mining areas. UGM Press. Yogyakarta [Indonesian].
Suhartono S, Sholehah DN, Murdianto RS. 2020. Respon pertumbuhan dan produksi andrographolida tanaman sambiloto (Andrographis paniculata Nees) akibat perbedaan dosis pupuk guano. Rekayasa 13 (2): 164–171.
Sun W, Shahrajabian MH. 2023. The application of arbuscular mycorrhizal fungi as microbial biostimulant, sustainable approaches in modern agriculture. Plants 12: 3101. DOI: 10.3390/plants12173101.
Tajidin NE, Shaari K, Maulidiani M, Salleh NS, Ketaren BR, Mohamad M. 2019. Metabolite profiling of Andrographis paniculata (Burm. f.) Nees. young and mature leaves at different harvest ages using 1H NMR-based metabolomics approach. Sci Rep 9 (1): 16766. DOI: 10.1038/s41598-019-52905-z.
Tang H, Hassan MU, Feng L, Nawaz M, Shah AN, Qari SH, Liu Y, Miao J. 2022. The critical role of arbuscular mycorrhizal fungi to improve drought tolerance and nitrogen use efficiency in crops. Front. Plant Sci 13: 919166. DOI: 10.3389/fpls.2022.919166.
Urban A, Rogowski P, Wasilewska-Debowska W, Romanowska E. 2021. Understanding maize response to nitrogen limitation in different light conditions for the improvement of photosynthesis. Plants 10: 1932. DOI: 10.3390/plants10091932.
Wahab A, Muhammad M, Munir A, Abdi G, Zaman W, Ayaz A, Khizar C, Reddy SPP. 2023. Role of arbuscular mycorrhizal fungi in regulating growth, enhancing productivity, and potentially influencing ecosystems under abiotic and biotic stresses. Plants 12: 3102. DOI: 10.3390/plants12173102.
Wood SA, Tirfessa D, Baudron F. 2018. Soil organic matter underlies crop nutritional quality and productivity in smallholder agriculture. Agric Ecosyst Environ 266: 100–108.
Yali MP, Bozorg–Amirkalaee M. 2022. The effect of microbial inoculants on secondary metabolite production. Sustain Hortic. Pp: 55–76. DOI: 10.1016/B978-0-323-91861-900009-4.
Zhao YY, Cartabia A, Lalaymia I, Declerck S. 2022. Arbuscular mycorrhizal fungi and production of secondary metabolites in medicinal plants. Mycorrhiza 32: 221–256. DOI: 10.1007/s00572-022-01079-0.

Most read articles by the same author(s)

1 2 > >>