Biochemical composition and volatile profile analysis of three varieties of Coffea arabica and their correlation with the microclimate of Mount Tangkuban Perahu, West Java, Indonesia

##plugins.themes.bootstrap3.article.main##

ROSY ANNAZA FIRNABILLAH
ERI MUSTARI
ERLY MARWANI

Abstract

Abstract. Firnabillah RA, Mustari E, Marwani E. 2024. Biochemical composition and volatile profile analysis of three varieties of Coffea arabica and their correlation with the microclimate of Mount Tangkuban Perahu, West Java, Indonesia. Biodiversitas 25: 3264-3276. The quality of coffee is determined by various biochemical compounds, including chlorogenic acid, caffeine, trigonelline, sucrose, and oil, as well as the volatile metabolite profile in coffee beans. Genetic factors and environmental conditions at the coffee cultivation site influence the composition of these compounds. This study aimed to analyze the biochemical composition and volatile profile of various coffee samples, including Ateng, Tim-Tim, and Sigarar Utang, and investigate their correlation with microclimate factors. Different analytical methods were used to examine the green beans, including High-Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS) for caffeine, chlorogenic acids, sucrose, and trigonelline, Soxhlet methods for oil content determination, and Gas Chromatography-Mass Spectrometry (GC-MS) for volatile compound analysis. The results showed distinct biochemical components and metabolite profiles among the three arabica coffee varieties. The Ateng variety had the highest concentrations of chlorogenic acid, while the Tim-Tim variety had the lowest content of these compounds. Trigonelline and caffeine content was similar across all varieties. Sucrose content was highest in the Sigarar Utang variety, while oil content was higher in the Ateng and Tim-Tim varieties compared to Sigarar Utang. Principal Component Analysis (PCA) showed significant metabolite variation among the three varieties, with PC1 and PC2 accounting for 69.2% of the variance. Furthermore, Partial Least Squares-Discriminant Analysis (PLS-DA) successfully distinguished the three varieties and identified potential biomarker compounds for classification. Additionally, the study discovered that the environmental factor, specifically light intensity affected the sucrose and oil compounds in arabica green beans coffee. The study concluded that the three varieties' biochemical composition and volatile metabolites differed. Certain compounds were found to correlate with measured microclimatic factor.

##plugins.themes.bootstrap3.article.details##

References
Ahmed S, Brinkley S, Smith E, Sela A, Theisen M, Thibodeau C, Warne T, Anderson E, Van Dusen N, Giuliano P, Ionescu KE, Cash SB. 2021. Climate change and coffee quality: Systematic review on the effects of environmental and management variation on secondary metabolites and sensory attributes of Coffea arabica and Coffea canephora. Front Plant Sci 12: 708013. DOI: 10.3389/fpls.2021.708013.
Akiyama M, Murakami K, Hirano Y, Ikeda M, Iwatsuki K, Wada A, Tokuno K, Onishi M, Iwabuchi H. 2008. Characterization of headspace aroma compounds of freshly brewed Arabica coffees and studies on a characteristic aroma compound of Ethiopian coffee. J Food Sci 73 (5): C335-C346. DOI: 10.1111/j.1750-3841.2008.00752.x.
Alves AL, Pessoa MS, De Souza PEN, Partelli FL, Moscon PS, da Silva EC, Guimarães AO, Muniz EP, Pinheiro PF, Borém FM, Morais PC. 2018. Influence of environmental and microclimate factors on the coffee beans quality (C. canephora): Correlation between chemical analysis and stable free radicals. Agric Sci 9 (9): 1173-1187. DOI: 10.4236/as.2018.99082.
Amanpour A, Selli S. 2016. Differentiation of volatile profiles and odor activity values of Turkish coffee and French press coffee. J Food Process Preserv 40 (5): 1116-1124. DOI: 10.1111/jfpp.12692.
Angeloni S, Mustafa AM, Abouelenein D, Alessandroni L, Acquaticci L, Nzekoue FK, Petrelli R, Sagratini G, Vittori S, Torregiani E, Caprioli G. 2021. Characterization of the aroma profile and main key odorants of Espresso coffee. Molecules 26 (13): 3856. DOI: 10.3390/molecules26133856.
Anhar A, Abubakar Y, Widayat HP, Muslih AM, Romano, Baihaqi A. 2021. Altitude, shading, and management intensity effect on Arabica coffee yields in Aceh, Indonesia. Open Agric 6: 254-262. DOI: 10.1515/opag-2021-0220.
Arctander S. 1994. Perfume and Flavor Chemicals (Aroma Chemicals): Volume I. Allured Publishing Corporation, USA.
Araújo AV, Partelli FL, Oliosi G, Pezzopane JRM. 2016. Microclimate, development and productivity of robusta coffee shaded by rubber trees and at full sun. Rev Ciênc Agron 47 (4): 700-709. DOI: 10.5935/1806-6690.20160084.
Arifin M, Devnita R. 2008. Micromorphological characterization of some volcanic soil in West Java. Indones J Geosci 3 (4): 195-203. DOI: 10.17014/ijog.vol3no4.20082.
Assa A, Loppies JE, Amalia AN, Indriana D, Mamang URR, Ariyanti M, Winaldi A. 2021. Chemical compounds and sensory characteristics of Arabica coffee (Coffea arabica) as a novel specialty coffee from Sinjai regency, Indonesia. Food Res 5 (2): 107-112. DOI: 10.26656/Fr.2017.5(S2).001.
Awaliyah S, Widiyanto SNB, Maulani RR, Hidayat A, Husyari UD, Syamsudin TS, Marwani E. 2022. Correlation of microclimate of west Java on caffeine and chlorogenic acid in Coffea canephora var. robusta. J Biol Sci Technol Manag 4 (1): 54-60. DOI: 10.5614/3bio.2022.4.1.7.
Awwad S, Issa R, Alnsour L, Albals D, Al-Momani I. 2021. Quantification of caffeine and chlorogenic acid in green and roasted coffee samples using HPLC-DAD and evaluation of the effect of degree of roasting on their content. Molecules 26 (24): 7502. DOI: 10.3390/Molecules26247502.
Ayelign A, Sabally K. 2013. Determination of Chlorogenic Acids (CGA) in coffee beans using HPLC. Am J Res Commun 1 (2): 78-91.
Barbosa JN, Borém FM, Cirillo MÂ, Malta MR, Alvarenga AA, Alves HMR. 2012. Coffee quality and its interactions with environmental factors in Minas Gerais, Brazil. J Agric Sci 4 (5): 181-190. DOI: 10.5539/jas.v4n5p181.
Belay A, Ture K, Redi M, Asfaw A. 2008. Measurement of caffeine in coffee beans with UV/Vis spectrometer. Food Chem 108 (1): 310-315. DOI: 10.1016/j.foodchem.2007.10.024.
Bertrand B, Boulanger R, Dussert S, Ribeyre F, Berthiot L, Descroix F, Joët T. 2012. Climatic factors directly impact the volatile organic compound fingerprint in green Arabica coffee bean as well as coffee beverage quality. Food Chem 135 (4): 2575-2583. DOI: 10.1016/j.foodchem.2012.06.060.
Braga CP, Adamec J. 2018. Metabolome analysis. In: Ranganathan S, Gribskov M, Nakai K, Schönbach C (eds). Encyclopedia of Bioinformatics and Computational Biology. Elsevier, Amsterdam, Netherlands. DOI: 10.1016/B978-0-12-809633-8.20134-9.
Budiastra IW, Sutrisno M, Widyotomo S, Ayu PC. 2020. Determination of trigonelline and Chlorogenic Acid (CGA) concentration in intact coffee beans by NIR spectroscopy. Agric Eng Intl 22 (1): 162-168.
BPS (Badan Pusat Statistik Indonesia). 2022. Statistik Perkebunan Unggulan Nasional 2020-2022. Direktorat Jenderal Perkebunan Kementerian Pertanian Republik Indonesia, Jakarta. [Indonesian]
Campa C, Ballester JF, Doulbeau S, Dussert S, Hamon S, Noirot M. Trigonelline and sucrose diversity in wild Coffea species. Food Chem 88: 39-43. DOI: 10.1016/j.foodchem.2004.01.020.
Castro-Moretti FR, Cocuron J-C, Castillo-Gonzalez H, Escudero-Leyva E, Chaverri P, Guerreiro-Filho O, Slot JC, Alonso AP. 2023. A metabolomic platform to identify and quantify polyphenols in coffee and related species using liquid chromatography mass spectrometry. Front Plant Sci 13: 1057645. DOI: 10.3389/fpls.2022.1057645.
Cassamo CT, Mangueze AVJ, Leitão AE, Pais IP, Moreira R, Campa C, Chiulele R, Reis FO, Marques I, Scotti-Campos P, Lidon FC, Partelli FL, Ribeiro-Barros AI, Ramalho JC. 2022. Shade and altitude implications on the physical and chemical attributes of green coffee beans from Gorongosa Mountain, Mozambique. Agronomy 12 (10): 2540. DOI: 10.3390/agronomy12102540.
Ceylan R, Zengin G, Guler GO, Aktumsek A. 2020. Bioactive constituents of Lathyrus czeczottianus and ethyl acetate and water extracts and their biological activities: An endemic plant to Turkey. S Afr J Bot 143: 306-311. DOI: 10.1016/j.sajb.2020.11.023.
Cheng B, Furtado A, Smyth HE, Henry RJ. 2016. Influence of genotype and environment on coffee quality. Trends Food Sci Technol 57: 20-30. DOI: 10.1016/j.tifs.2016.09.003.
Cheserek JJ, Ngugi K, Muthomi JW, Omondi CO, Ezekiel KN. 2021. Green bean biochemical attributes of arabusta coffee hybrids from Kenya using HP-LC and soxhlet extraction methods. Aust J Crop Sci 15 (2): 201-208. DOI: 10.21475/Ajcs.21.15.02.P2581.
Constantino LV, Zeffa DM, Koltun A, Urbano MR, Sanzovo AWS, Nixdorf SL. 2020. Extraction of soluble sugars from green coffee beans using hot water and quantification by a chromatographic method without an organic solvent. Acta Chromatogr 32 (4): 242-246. DOI: 10.1556/1326.2020.00704.
Czerny M, Mayer F, Grosch W. 1999 Sensory study on the character impact odorants of roasted Arabica coffee. J Agric Food Chem 47 (2): 695-699. DOI: 10.1021/jf980759i.
Dani D, Rokhmah D, Pranowo D. 2019. Identifikasi awal perbedaan karakter morfofisiologi antar empat kultivar kopi Arabika. Jurnal Tanaman Industri dan Penyegar 6 (3): 119. DOI: 10.21082/jtidp.v6n3.2019.p119-126. [Indonesian]
Delaroza F, Rakocevic M, Malta GB, Sanchez PM, Bruns RE, Scarminio IS. 2017. Factorial design effects of plant density, pattern and light availability on the caffeine, chlorogenic acids, lipids, reducing sugars and ash contents of Coffea arabica L. beans and leaves. Anal Methods 9 (24): 3612-3618. DOI: 10.1039/C7AY00721C.
De Maria CAB, Trugo LC, Neto FRA, Moreira RFA, Alviano CS. 1996. Composition of green coffee water-soluble fractions and identification of volatiles formed during roasting. Food Chem 55 (3): 203-207. DOI: 10.1016/0308-8146(95)00104-2.
Demirci MA, Ipek Y, Gul F, Ozen T, Demirtas I. 2018. Extraction, isolation of heat-resistance phenolic compounds, antioxidant properties, characterization and purification of 5-hydroxymaltol from Turkish apple pulps. Food Chem 269: 111-117. DOI: 10.1016/j.foodchem.2018.06.147.
Dos Santos Scholz MB, Kitzberger CSG, Durand N, Rakocevic M. 2018. From the field to coffee cup: impact of planting design on chlorogenic acid isomers and other compounds in coffee beans and sensory attributes of coffee beverage. Eur Food Res Technol 244: 1793-1802. DOI: 10.1007/s00217-018-3091-7.
Efthymiopoulos I, Hellier P, Ladommatos N, Kay A, Mills-Lamptey B. 2018. Integrated strategies for water removal and lipid extraction from coffee industry residues. Sustain Energy Technol Assessments 29: 26-35. DOI: 10.1016/j.seta.2018.06.016.
Farah A, Donangelo CM. 2006. Phenolic compounds in coffee. Mini-review. Braz J Plant Physiol 18 (1): 1-15. DOI: 10.1590/S1677-04202006000100003.
Farag MA, Zayed A, Sallam IE, Abdelwareth A, Wessjohann LA. 2022. Metabolomics-based approach for coffee beverage improvement in the context of processing, brewing methods, and quality attributes. Foods 11 (6): 864. DOI: 10.3390/foods11060864.
Franca AS, Mendonça JCF, Oliveira SD. 2005. Composition of green and roasted coffees of different cup qualities. LWT-Food Sci Technol 38 (7): 709-715. DOI: 10.1016/j.lwt.2004.08.014.
Gancarz M, Dobrza?ski Jr B, Malaga-Tobo?a U, Tabor S, Combrzy?ski M, ?wik?a D, Strobel WR, Oniszczuk A, Karami H, Darvishi Y, ?ytek A, Rusinek R. 2022. Impact of coffee bean roasting on the content of pyridines determined by analysis of volatile organic compounds. Molecules 2: 1559. DOI: 10.3390/molecules27051559.
Gichimu BM, Gichuru EK, Mamati GE, Nyende AB. 2014. Biochemical composition within Coffee arabica cv. ruiru 11 and its relationship with cup quality. J Food Res 3 (3): 31-44. DOI: 10.5539/Jfr.V3n3p31.
Gimase JM, Thagana WM, Kirubi DT, Gichuru EK, Kathurima CW. 2014. Beverage quality and biochemical attributes of arabusta coffee (C. arabica L. x C. canephora Pierre) and their parental genotypes. Afr J Food Sci 8 (9): 456-464. DOI: 10.5897/Ajfs2014.1132.
Happyana N, Pratiwi A, Hakim EH. 2021. Metabolite profiles of the green beans of Indonesian Arabica coffee varieties. Intl J Food Sci 2021: 5782578. DOI: 10.1155/2021/5782578.
Heo J, Adhikari K, Choi KS, Lee J. 2020 Analysis of caffeine, chlorogenic acid, trigonelline, and volatile compounds in cold brew coffee using high-performance liquid chromatography and solid-phase microextraction gas chromatography-mass spectrometry. Foods 9 (12): 1746. DOI: 10.3390/foods9121746.
Joët T, Laffargue A, Descroix F, Doulbeau S, Bertrand B, de Kochko A, Dussert S. 2010. Influence of environmental factors, wet processing and their interactions on the biochemical composition of green Arabica coffee beans. Food Chem 118 (3): 693-701. DOI: 10.1016/j.foodchem.2009.05.048.
Jolliffe IT, Cadima J. 2016. Principal component analysis: A review and recent developments. Philos Trans A Math Phys Eng Sci 374: 20150202. DOI: 10.1098/rsta.2015.0202.
Humas Jabar. 2022. 10 Kopi Terbaik Jabar Tampil di Ajang World of Coffee Italia. Kota Bandung: Jabarprov. https://jabarprov.go.id/berita/ 10-kopi-terbaik-jabar-tampil-di-ajang-world-of-coffee-italia-6022. [Indonesian]
Knysak D. 2017. Volatile compounds profiles in unroasted Coffea arabica and Coffea canephora beans from different countries. Food Sci Technol 37: 444-448. DOI: 10.1590/1678-457X.19216.
Koutouleas A, Sarzynski T, Bordeaux M, Bosselmann AS, Campa C, Etienne H, Turreira-García N, Rigal C, Vaast P, Ramalho JC, Marraccini P, Ræbild A. 2022. Shaded-coffee: A nature-based strategy for coffee production under climate change: A review. Front Sustain Food Syst 6: 877476. DOI: 10.3389/fsufs.2022.877476.
Ky C-L, Louarn J, Dussert S, Guyot B, Hamon S, Noirot M. 2001. Caffeine, trigonelline, chlorogenic acids and sucrose diversity in wild Coffea arabica L. and C. canephora P. accessions. Food Chem 75 (2): 223-230. DOI: 10.1016/S0308-8146(01)00204-7.
Leonel L-E, Philippe V. 2007. Effects of altitude, shade, yield and fertilization on coffee quality (Coffea arabica L. var. caturra) produced in agroforestry systems of the Northern Central Zones of Nicaragua. In: 2nd International Symposium on Multi-Strata Agroforestry Systems with Perennial Crops. Catie, Turrialba, Costa Rica, 17-21 September 2007. DOI: 10.13140/RG.2.1.4689.1289.
Mariño YA, Pérez M-E, Gallardo F, Trifilio M, Cruz M, Bayman P. 2016. Sun vs. shade affects infestation, total population and sex ratio of the coffee berry borer (Hypothenemus hampei) in Puerto Rico. Agric Ecosyst Environ 222: 258-266. DOI: 10.1016/j.agee.2015.12.031.
Martins PMM, Batista NN, da Cruz Pedrozo Miguel MG, Simão JBP, Soares JR, Schwan RF. 2020. Coffee growing altitude influences the microbiota, chemical compounds and the quality of fermented coffees. Food Res Intl 129: 108872. DOI: 10.1016/j.foodres.2019.108872.
Mazzafera P, Silvarolla B. 2010. Caffeine content variation in single green Arabica coffee seeds. Seed Sci Res 20 (3): 163-167. DOI: 10.1017/S0960258510000140.
Mehari B, Redi-Abshiro M, Chandravanshi BS, Combrinck S, McCrindle R, Atlabachew M. 2019. GC-MS profiling of fatty acids in green coffee (Coffea arabica L.) beans and chemometric modelling for tracing geographical origins from Ethiopia. J Sci Food Agric 99 (8): 3811-3823. DOI: 10.1002/jsfa.9603.
Mengistu MW, Workie MA, Mohammed AS. 2020. Biochemical compounds of Arabica coffee (Coffea arabica L.) varieties grown in northwestern highlands of Ethiopia. Cogent Food Agric 6 (1): 1741319. DOI: 10.1080/23311932.2020.1741319.
Mortzfeld FB, Hashem C, Vranková K, Winkler M, Rudroff F. 2020. Pyrazines: Synthesis and industrial application of these valuable flavor and fragrance compounds. Biotechnol J 15 (11): 2000064. DOI: 10.1002/biot.202000064.
Odeny DA, Chemining’wa GN, Shibairo, Khaturima CW. 2016. Biochemical components of shaded coffee under different management levels. Adv J Food Sci Technol 12 (9): 519-526. DOI: 10.19026/ajfst.12.3063.
Ongo EA, Montevecchi G, Antonelli A, Sberveglieri V, Sevilla F. 2020. Metabolomics fingerprint of Philippine coffee by spme-gc-ms for geographical and varietal classification. Food Res Intl 134: 109227. DOI: 10.1016/J.Foodres.2020.109227.
Oestreich-Janzen S. 2010. Chemistry of Coffee. CAFEA GmbH, Elsevier Ltd., Hamburg. DOI: 10.1016/B978-008045382-8.00708-5.
PubChem. https://pubchem.ncbi.nlm.nih.gov/. [9 January 2024]
Papandreou C, Hernández-Alonso P, Bulló M et al. 2019. Plasma metabolites associated with coffee consumption: A metabolomic approach within the PREDIMED study. Nutrients 11: 1032. DOI: 10.3390/nu11051032.
Pearson K. 1901. On lines and planes of closest fit to systems of points in space. Phil Mag 2: 559-572. DOI: 10.1080/14786440109462720.
Perrone D, Donangelo CM, Farah A. 2008. Fast simultaneous analysis of caffeine, trigonelline, nicotinic acid and sucrose in coffee by liquid chromatograph-mass spectrometry. Food Chem 110 (4): 1030-1035. DOI: 10.1016/j.foodchem.2008.03.012.PMid:26047298.
Putri SP, Nusantara FJP, Putri SE. 2017. Aplikasi pendekatan metabolomik untuk ilmu pangan dan mikro-biologi. Bunga Rampai Forum Peneliti Muda Indonesia 2017. [Indonesian]
Procida G, Lagazio C, Cateni F, Zacchigna M. 2020. Characterization of Arabica and Robusta volatile coffees composition by reverse carrier gas headspace gas chromatography–mass spectrometry based on a statistical approach. Food Sci Biotechnol 29 (10): 1319-1330. DOI: 10.1007/s10068-020-00779-7.
Saputri M, Lioe HN, Wijaya CH. 2020. Pemetaan karakteristik kimia biji kopi Arabika Gayo dan Robusta Gayo. Jurnal Teknologi dan Industri Pangan 31 (1): 76-85. DOI: 10.6066/jtip.2020.31.1.76. [Indonesian]
Seninde DR, Chambers E. 2020. Coffee flavor: A review. Beverages 6 (3): 44. DOI: 10.3390/Beverages6030044.
Silvarolla MB, Mazzafera P, Fazuoli LC. 2004. Plant biochemistry: A naturally decaffeinated Arabica coffee. Nature 429 (6994): 826. DOI: 10.1038/429826a.
Silva ACR, Garrett R, Rezende CM, Meckelmann SW. 2022. Lipid characterization of Arabica and Robusta coffee beans by liquid chromatography-ion mobility-mass spectrometry. J Food Compos Anal 111: 104587. DOI: 10.1016/j.jfca.2022.104587.
Sridevi V, Giridhar P. 2014. Changes in caffeine content during fruit development in Coffea canephora P. ex. Fr. grown at different elevations. J Biol Earth Sci 4 (2): B168-B175.
Tolessa K, D’heer J, Duchateau L, Boeckx P. 2017. Influence of growing altitude, shade and harvest period on quality and biochemical composition of Ethiopian specialty coffee. J Sci Food Agric 97: 2849-2857. DOI: 10.1002/jsfa.8114.
Tsegay G, Redi-Abshiro M, Chandravanshi BS, Ele E, Mohammed AM, Mamo H. 2020. Effect of altitude of coffee plants on the composition of fatty acids of green coffee beans. BMC Chem 14 (1): 36. DOI: 10.1186/s13065-020-00688-0.
Villarreal PD, Baena CLM, Posada SHE. 2014. Análisis de lípidos y ácidos grasos en café verde de líneas avanzadas de Coffea Arabica cultivadas en Colombia. https://biblioteca.cenicafe.org/handle/10778/ 520. [Spanish] [8 January 2024]
Zakidou P, Plati F, Matsakidou A, Varka E-M, Blekas G, Paraskevopoulou A. 2021. Single origin coffee aroma: From optimized flavor protocols and coffee customization to instrumental volatile characterization and chemometrics. Molecules 26: 4609. DOI: 10.3390/molecules26154609.