Richness and community structure of arbuscular mycorrhizal fungi associated with quelites in the Sierra Sur region of Oaxaca, Mexico

##plugins.themes.bootstrap3.article.main##

BETHSABE BELEM VILLAGÓMEZ-GONZÁLEZ
CELERINO ROBLES
SANTOS CARBALLAR-HERNANDEZ

Abstract

Abstract. Villagómez-González BB, Robles C, Carballar-Hernandez S. 2024. Richness and community structure of arbuscular mycorrhizal fungi associated with quelites in the Sierra Sur region of Oaxaca, Mexico. Biodiversitas 25: xxxx. Wild plant species that are collected and consumed by local populations are called “quelites”. In Mexico, and particularly in the state of Oaxaca, the culture of collecting and consuming quelites is widely preserved. The interactions of wild plants with Arbuscular Mycorrhizal Fungi (AMF) promote the successful establishment of plants in ecosystems and allow their survival. The aim of this work was to characterize the richness, diversity, and population structure of mycorrhizal interaction in five species of quelites. The structure of AMF communities was different among the five quelite species. A total of 42 AMF morphospecies grouped into five families and 12 genera were identified. The composition of AMF communities in the five species of quelites studied was significantly different. The Acaulosporaceae family recorded the highest number of morphospecies (42% of the total), followed by the Glomeraceae and Ambisporaceae families (33 and 9.5% respectively). Funneliformis geosporum and Claroideoglomus claroideum were the predominant AMF morphospecies. The AMF communities with greater diversity and equity indexes were recorded in the quelites Alloispermum sp. and Solanum americanum. The Jaccard similarity index separates quelite species into three groups, since the composition of AMF species was significantly different between these groups. The pH and available phosphorus of the soil affected the distribution and abundance of AMF species associated with the plant species studied.

##plugins.themes.bootstrap3.article.details##

References
AlRawashdeh I, Mohammad I. 2013. Genetic Diversity Determination for Peganum Harmala Species using Shannon's, Simposn, Eveness, Density and Richness Parameters in Jordan. Journal of Biology, Agiculture and Healthcare 5: 1-5
Ba L, Ning J, Wang D, Facelli E, Facelli JM, Yang Y, Zhang L. 2012. The relationship between the diversity of arbuscular mycorrhizal fungi and grazing in a meadow steppe. Plant and Soil 352: 143-156. DOI: 10.1007/s11104-011-0985-6
Balcázar-Quiñones A, White-Olascoaga L, Chávez-Mejía C, Zepeda-Gómez C. 2020. Los quelites: riqueza de especies y conocimiento tradicional en la comunidad otomí de San Pedro Arriba, Temoaya, Estado de México. Polibotánica 49: 219-242. DOI: 10.18387/polibotanica.49.14
Baum C, El-Tohamy W, Gruda N. 2015. Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: a review. Scientia Horticulturae 187: 131-141. DOI: 10.1016/j.scienta.2015.03.002
Bray RH, Kurtz LT. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Science 59: 39-46
Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N. 1996. Working with mycorrhizas in forestry and agriculture. Australian Centre for International Agricultural Research. Canberra, Australia. Pp. 1-374
Bye R, Linares E. 2000. Los quelites, plantas comestibles de México: una reflexión sobre intercambio cultural. CONABIO. Bioiodiversitas 31:11-14
Chaudhary VB, Holland EP, Charman-Anderson S, Guzman A, Bell-Dereske L, Cheeke TE, Corrales A, Duchicela J, Egan C,Gupta MM. 2022. What are mycorrhizal traits?. Trends in Ecology and Evolution 37: 573-581. DOI: 10.1016/J.TREE.2022.04.003
Chen YL, Xu ZW, Xu TL, Veresoglou SD, Yang GW, Chen, BD. 2017. Nitrogen deposition and precipitation induced phylogenetic clustering of arbuscular mycorrhizal fungal communities. Soil Biology and Biochemistry 115: 233-242. DOI: 10.1016/j.soilbio.2017.08.024
Dandan Z, Zhiwei Z. 2007. Biodiversity of arbuscular mycorrhizal fungi in the hot-dry valley of the Jinsha River, southwest China. Applied Soil Ecology 37: 118-128. DOI: 10.1016/j.apsoil.2007.06.003
Davison J, Moora M, Semchenko M, Adenan SB, Ahmed T, Akhmetzhanova A, Alatalo JM, Al-Quraishy S, Andriyanova E, Anslan S, Bahram M, Batbaatar A, Brown C, Bueno CG, Cahill J, Cantero JJ, Casper BB, Cherosov M, Chideh S, Coelho AP, Coghill M, Decocq G, Dudov S, Fabiano EC, Fedosov VE, Fraser L, Glassman S, Helm A, Henry AL, Hérault B, Hiiesalu I, Hiiesalu I, Hozzein WN, Kohout P, Koljalg U, Koorem K, Laanisto L, Mander U, Mucina L, Munyampundu JP, Neuenkamp L, Niinemets U, Nyamukodiwa C, Oja J, Onipchenko V, Pärtel M, Phosri C, Polme S, Pussa Kronk A, Saitta A,Semboli O, Siim-Kaarel S, Seregin A, Sudheer S, Peña-Venegas CP, Paz C, Vahter T, Vasar M, Veraart AJ, Tedersoo L, Zobel M, Öpik M. 2021. Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytologist 231: 763-776. DOI: 10.1111/nph.17240
García Calderón N, Ibañez Huerta A, Alvarez Arteaga G, Krasilnikov P, Hernández Jiménez A. 2006. Soil diversity and properties in mountainous subtropical areas, in Sierra Sur de Oaxaca, Mexico. Canadian Journal of Soil Science 86: 61-76. DOI: 10.4141/S04-070
Guerra-Sierra BE. 2008. Micorriza arbuscular. Recurso microbiológico en la agricultura sostenible. Revista Tecnología en Marcha. 21: 191-201.
Han Y, Feng J, Han M, Zhu B. 2020. Responses of arbuscular mycorrhizal fungi to nitrogen addition: A meta?analysis. Global Change Biology, 26: 7229-7241. DOI: 10.1111/gcb.15369
Hoseini RZ, Goltapeh EM, Modarres-Sanavy SAM, Heidarzadeh A. 2021. Effect of the bio-fertilizers on the steviol glycosides (SGs) content and biomass in Stevia rebaudiana (Bert.) Bertoni at vegetative and flowering stages. Scientia Horticulturae 275: 109658
Jaramillo R. 2011. La micorriza arbuscular (MA) centro de la rizósfera: comunidad microbiológica dinámica del suelo. Revista Contactos 81: 17-23.
Johnson J-M, Houngnandan P, Kane A, Sanon KB, Neyra M. 2013. Diversity patterns of indigenous arbuscular mycorrhizal fungi associated with rhizosphere of cowpea (Vigna unguiculata (L.) Walp.) in Benin, West Africa. Pedobiologia, 56: 121-128. DOI: 10.1016/j.pedobi.2013.03.003
Juárez CS, Schwentesius RR, Gómez CMA. 2018. Plantas y Hongos comestibles de la región Loxicha, Oaxaca. Universidad Autónoma de Chapingo, México. Pp 1-71
Liu M, Shen Y, Li Q, Xiao W, Song X. 2021. Arbuscular mycorrhizal fungal colonization and soil pH induced by nitrogen and phosphorus additions affects leaf C: N: P stoichiometry in Chinese fir (Cunninghamia lanceolata) forests. Plant and Soil 461: 421-440. DOI: 10.1007/s11104-021-04831-1
Luna-José AZ, Rendón-Aguilar B. 2008. Recursos vegetales útiles en diez comunidades de la Sierra Madre del Sur, Oaxaca, México. Polibotánica 26: 193-242.
Montaño Arias NM, Camargo-Ricalde SL, García-Sánchez R, Monroy Alta A. 2008. Micorrizas arbusculares en ecosistemas áridos y semiáridos. Mundi Prensa. México D.F. Pp 1-460
Nelson DA, Sommers LE. 1983. Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 2 Chemical and Microbiological Properties 9: 539-579. DOI:10.2134/agronmonogr9.2.2ed.c29
Oehl F, Laczko E, Bogenrieder A, Stahr, K., Bosch, R., Van der Heiden, M., & Sieverding, E. 2010. Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biology and Biochemistry, 42(5).
Oehl, F., Palenzuela, J., Sánchez-Castro, I., Kuss, P., Sieverding, E., & Silva, G. A. D. 2012. Acaulospora nivalis, a new fungus in the Glomeromycetes, characteristic for high alpine and nival altitudes of the Swiss Alps. Nova Hedwigia, 105-122.
Oehl, F., Sieverding, E., Ineichen, K., Maeder, P., Wiemken, A., & Boller, T. 2009. Distinct sporulation dynamics of arbuscular mycorrhizal fungal communities from different agroecosystems in long-term microcosms. Agriculture, Ecosystems and Environment, 134(3-4), 257-268.
Sandoval-Pineda JF, Pérez-Moncada UA, Rodriguez A, Torres-Rojas E. 2020. Alta presencia de cadmio resulta en baja diversidad de hongos formadores de micorrizas arbusculares asociados a cacao (Theobroma cacao L.). Acta Biológica Colombiana 25: 333-344. DOI: 10.15446/abc.v25n3.78746
Quiñones EC. 2009. Plantas comestibles no convencionales en Chiapas, México. Universidad de Ciencias y Artes de Chiapas. México Pp 1-133
Ranhotra GS, Gelroth JA, Leinen SD, Viñas MA, Lorenz KJ. 1998. Nutritional Profile of Some Edible Plants from Mexico. Journal of Food Composition and Analysis 11: 298-304. DOI: 10.1006/jfca.1998.0590
Román-Cortés NR, García-Mateos MR, Castillo-González AM, Sahagún-Castellanos J, Jiménez-Arellanes MA. 2018. Características Nutricionales y Nutraceuticas de hortalizas de uso Ancestral en México. Revista Fitotecnia Mexicana 41: 245-253. DOI: 10.35196/rfm.2018.3.245-253
Santiago-Saenz YO, Hernándezz-Fuentes AD, López-Palestina CU, Garrido-Cauich JH, Alatorre-Cruz JM, Monroy-Torres R. 2019. Importancia nutricional y actividad biológica de los compuestos bioactivos de quelites consumidos en México. Revista Chilena de Nutrición 46: 593-605. DOI: 10.4067/S0717-75182019000500593
SEMARNAT, 2002. Norma O?cial Mexicana NOM-021-RECNAT-2000. Que establece las especi?caciones de fertilidad, salinidad y clasi?cación de suelos. Estudios, muestreo y análisis. SEMARNAT, D.F., México.
Song J, Han Y, Bai B, Jin S, He Q, Ren J. 2019. Diversity of arbuscular mycorrhizal fungi in rhizosphere soils of the Chinese medicinal herb Sophora flavescens Ait. Soil and Tillage Research 195: 104423. DOI: 10.1016/j.still.2019.104423
Van Rensburg WJ, Venter S, Netshiluvhi T, Van Den Heever E, Vorster H, De Ronde J, Bornman C. 2004. Roles of indigenous leafy vegetables in combating hunger and malnutrition. South Africa Journal of Botany 70: 52-59. DOI: 10.1016/S0254-6299(15)30268-4
Zhang R, Mu Y, Li X, Li S, Sang P, Wang X, Wu H, Xu, N. 2020. Response of the arbuscular mycorrhizal fungi diversity and community in maize and soybean rhizosphere soil and roots to intercropping systems with different nitrogen application rates. Science of the Total Environment 740: 139810. DOI: 10.1016/j.scitotenv.2020.139810