Immunogenicity and reactivity of recombinant Zika virus NS1 inclusion bodies from an Indonesian isolate

##plugins.themes.bootstrap3.article.main##

UTAMI MULYANINGRUM
https://orcid.org/0000-0003-2553-4589
YANRI WIJAYANTI SUBRONTO
https://orcid.org/0000-0002-6367-4884
DWI ARIS AGUNG NUGRAHANINGSIH
https://orcid.org/0000-0002-1616-3053
NASTITI WIJAYANTI

Abstract

Abstract. Mulyaningrum U, Subronto YW, Nugrahaningsih DAA, Wijayanti N. 2024. Immunogenicity and reactivity of recombinant Zika virus NS1 inclusion bodies from an Indonesian isolate. Biodiversitas 25: 2028-2034. Zika virus (ZIKV) still poses a significant global health hazard, with the potential for its dissemination to additional nations and the re-emergence of epidemics in previously impacted regions. Proper laboratory testing during surveillance can prevent future outbreaks. Non-Structural 1 (NS1) protein has been identified as a promising biomarker for detecting ZIKV infection. Therefore, this study produces and assesses the immunogenicity of the full-length recombinant ZIKV NS1 protein (rNS1FL) from an Indonesian isolate. It also studies its reactivity against other flavivirus members, especially the Dengue Virus (DENV). The cDNA fragment comprising the ZIKV NS1 sequence was synthesized and cloned into the pET28a plasmid. Subsequently, the recombinant plasmid was introduced into BL21(DE3)-competent Escherichia coli cells, and the protein was purified through affinity chromatography. Female BALB/c mice (Mus musculus) were intraperitoneally immunized with purified rNS1FL. An Enzyme-Linked Immunosorbent Assay (ELISA) evaluates the immunogenicity of rNS1FL and its cross-reactivity with the DENV NS1 monoclonal antibody. rNS1FL protein was expressed as insoluble fractions (inclusion bodies) at the expected size of approximately 48 kDa. The ELISA showed that immunization of BALB/c mice with purified rNS1FL from inclusion bodies led to a substantial triggering of NS1-specific antibodies. Furthermore, the test also revealed limited recognition of rNS1FL by the DENV NS1 monoclonal antibody. The findings indicated that rNS1FL inclusion bodies have immunogenic solid properties and did not display any cross-reactivity with the DENV NS1 monoclonal antibody. These observations showed the potential of rNS1FL as a serological diagnostic material for detecting ZIKV infection.

##plugins.themes.bootstrap3.article.details##

References
Cao-Lormeau VM, Roche C, Teissier A, Robin E, Berry AL, Mallet HP, Sall AA, Musso D. 2014. Zika virus, French Polynesia, South Pacific, 2013. Emerg Infect Dis 20:1085–1086. DOI: 10.3201/eid2006.140138
Cavazzoni CB, Bozza VBT, Lucas TCV, Conde L, Maia B, Mesin L, Schiepers A, Ersching J, Neris RLS, Conde JN, Coelho DR, Lima TM, Alvim RGF, Castilho LR, de Paula Neto HA, Mohana-Borges R, Assunção-Miranda I, Nobrega A, Victora GD, Vale AM. 2021. The immunodominant antibody response to Zika virus NS1 protein is characterized by cross-reactivity to self. J Exp Med 218:e20210580. DOI: 10.1084/jem.20210580
Ceconi M, Ariën KK, Delputte P. 2023. Diagnosing arthropod-borne flaviviruses: non-structural protein 1 (NS1) as a biomarker. Trends Microbiol. DOI: 10.1016/j.tim.2023.11.016
Chan JFW, Choi GKY, Yip CCY, Cheng VCC, Yuen KY. 2016. Zika fever and congenital Zika syndrome: An unexpected emerging arboviral disease. J Infect 72:507–524. DOI: 10.1016/j.jinf.2016.02.011
Chura-Chambi RM, Farah CS, Morganti L. 2022. Human growth hormone inclusion bodies present native-like secondary and tertiary structures which can be preserved by mild solubilization for refolding. Microb Cell Fact 21:1–10. DOI: 10.1186/s12934-022-01887-1
Cleton NB, Godeke GJ, Reimerink J, Beersma MF, van Doorn HR, Franco L, Goeijenbier M, Jimenez-Clavero MA, Johnson BW, Niedrig M, Papa A, Sambri V, Tami A, Velasco-Salas ZI, Koopmans MPG, Reusken CBEM. 2015. Spot the difference—development of a syndrome based protein microarray for specific serological detection of multiple Flavivirus infections in travelers. PLoS Negl Trop Dis 9:1–17. DOI: 10.1371/journal.pntd.0003580
Duffy MR, Chen TH, Hancock WT, Powers AM, Kool JL, Lanciotti RS, Pretrick M, Marfel M, Holzbauer S, Dubray C, Guillaumot L, Griggs A, Bel M, Lambert AJ, Laven J, Kosoy O, Panella A, Biggerstaff BJ, Fischer M, Hayes EB. 2009. Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med 360:2536–2543. DOI: 10.1056/NEJMoa0805715.
García-Fruitós E, González-Montalbán N, Morell M, Vera A, Ferraz RM, Arís A, Ventura S, Villaverde A. 2005. Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins. Microb Cell Fact 4:1–6. DOI: 10.1186/1475-2859-4-27
Goncalves A, Peeling RW, Chu MC, Gubler DJ, De Silva AM, Harris E, Murtagh M, Chua A, Rodriguez W, Kelly C, Wilder-Smith A. 2018. Innovative and new approaches to laboratory diagnosis of Zika and dengue: a meeting report. J Infect Dis 217:1060–1068. DOI: 10.1093/infdis/jix678
Gulland A. 2016. Zika virus is a global public health emergency, declares WHO. BMJ 352:i657. DOI: 10.1136/bmj.i657
Haddow AD, Schuh AJ, Yasuda CY, Kasper MR, Heang V, Huy R, Guzman H, Tesh RB, Weaver SC. 2012. Genetic characterization of Zika virus strains: geographic expansion of the Asian lineage. PLoS Negl Trop Dis 6:e1477-1483. DOI: 10.1371/journal.pntd.0001477
Kanno AI, Leite LCC, Pereira LR, de Jesus MJR, Andreata-Santos R, Alves RPS, Durigon EL, Ferreira LCS, Gonçalves VM. 2020. Optimization and scale-up production of Zika virus ?NS1 in Escherichia coli: application of Response Surface Methodology. AMB Express 10:1–13. DOI: 10.1186/s13568-019-0926-y
Kusuma S, Parwati I, Subroto T, Rukayadi Y, Fadhlillah M, Rizaludin A. 2021. Comparison of simple and rapid extracting methods of free-tags Mycobacterium tuberculosis protein 64 recombinant protein from polyacrylamide gel: Electroelution and the optimized passive elution. J Adv Pharm Technol Res 12:180–184. DOI: 10.4103/japtr.JAPTR_318_20
Kwong JC, Druce JD, Leder K. 2013. Case report: Zika virus infection acquired during brief travel to Indonesia. Am J Trop Med Hyg 89:516–517. DOI: 10.4269/ajtmh.13-0029
Landry ML, St George K. 2017. Laboratory diagnosis of Zika virus infection. Arch Pathol Lab Med 141:60–67. DOI: 10.5858/arpa.2016-0406-SA
Lebendiker M, Danieli T. 2014. Production of prone-to-aggregate proteins. FEBS Lett 588:236–246. DOI: 10.1016/j.febslet.2013.10.044
Lee HJ, Cho Y, Kang HJ, Choi H, Han KR, Chong CK, Kim YB. 2018. Identification of peptide based B-cell epitopes in Zika virus NS1. Biochem Biophys Res Commun 505:1010–1014. DOI: 10.1016/j.bbrc.2018.10.024
Leung GH, Baird RW, Druce J, Anstey NM. 2015 Case report Zika virus infection in Australia following a monkey bite in Indonesia. Southeast Asian J Trop Med Public Health 46:460–464. www.tm.mahidol.ac.th/seameo/2015-46-3/09-642913p460.pdf.
Liu J, Wan P, Li Q, Li X, Li A, Chen H, Li J, Liang W, Zheng H, Gu W, Li H. 2017 Construction and identification of recombinant HEK293T cell lines expressing non-structural protein 1 of Zika virus. Int J Med Sci 14:1072–1079. DOI: 10.7150/ijms.20417
Magalhães ICL, Marques LEC, Souza PFN, Girão NM, Herazo MMA, Costa HPS, vanTilburg MF, Florean EOPT, Dutra RF, Guedes MIF. 2021. Non-structural protein 1 from Zika virus: Heterologous expression, purification, and potential for diagnosis of Zika infections. Int J Biol Macromol 186:984–993. DOI: https://doi.org/10.1016/j.ijbiomac.2021.07.083
Muller DA, Young PR. 2013. The flavivirus NS1 protein: molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker. Antiviral Res 98:192–208. DOI: 10.1016/j.antiviral.2013.03.008
Nurjayadi M, Ariastuti D, Agustini K, Sulfianti A, Mangunwardoyo W. 2019. The immune responds of balb/C mice on antigen recombinant fim-C inclusion bodies Salmonella typhi protein emulsified with alumina adjuvant. IOP Conf Ser Mater Sci Eng 509:012089. DOI: 10.1088/1757-899X/509/1/012089
Olson JG, Ksiazek TG, Suhandiman G, Triwibowo. 1981 Zika virus, a cause of fever in Central Java, Indonesia. Trans R Soc Trop Med Hyg 75:389–393. DOI: 10.1016/0035-9203(81)90100-0
Olson JG, Ksiazek TG, Gubler DJ, Lubis SI, Simanjuntak G, Lee VH, Nalim S, Juslis K, See R. 1983. A survey for arboviral antibodies in sera of humans and animals in Lombok, Republic of Indonesia. Ann Trop Med Parasitol 77:131–137. DOI: 10.1080/00034983.1983.11811687
Perkasa A, Yudhaputri F, Haryanto S, Hayati RF, Ma’roef CN, Antonjaya U, Yohan B, Myint KS, Ledermann JP, Rosenberg R, Powers AM, Sasmono R. 2016. Isolation of Zika virus from febrile patient, Indonesia. Emerg Infect Dis 22:924–925. DOI: 10.1016/S1995-7645(11)60094-1
Peternel Š, Komel R. 2011. Active protein aggregates produced in Escherichia coli. Int J Mol Sci 12:8275–8287. DOI: 10.3390/ijms12118275
Peternel Š, Grdadolnik J, Gaberc-Porekar V, Komel R (2008) Engineering inclusion bodies for non denaturing extraction of functional proteins. Microb Cell Fact 7:1–9. DOI: 10.1186/1475-2859-7-34
Rachmania S, Sulistyaningsih E, Ratna Dewi AAI. 2021 Recombinant DBL2?-PfEMP1 of the Indonesian Plasmodium falciparum induces immune responses in Wistar rats. J Taibah Univ Med Sci 16:422–430. DOI: 10.1016/j.jtumed.2020.12.007
Ramaiah A, Dai L, Contreras D, Sinha S, Sun R, Arumugaswami V. 2017. Comparative analysis of protein evolution in the genome of pre-epidemic and epidemic Zika virus. Infect Genet Evol 51:74–85. DOI: 10.1016/j.meegid.2017.03.012
Rivera F, Espino AM. 2016. Adjuvant-enhanced antibody and cellular responses to inclusion bodies expressing FhSAP2 correlates with protection of mice to Fasciola hepatica. Exp Parasitol 160:31–38. DOI: 10.1053/j.gastro.2016.08.014.CagY
Roldán JS, Cassola A, Castillo DS. 2020. Optimization of recombinant Zika virus NS1 protein secretion from HEK293 cells. Biotechnol Reports 25:23–25. DOI: 10.1016/j.btre.2020.e00434
Rosa da Silva CM, Chura-Chambi RM, Ramos Pereira L, Cordeiro Y, De Souza Ferreira LC, Morganti L. 2018. Association of high pressure and alkaline condition for solubilization of inclusion bodies and refolding of the NS1 protein from zika virus. BMC Biotechnol 18:1–10. DOI: 10.1186/s12896-018-0486-2
Sasmono RT, Dhenni R, Yohan B, Pronyk P, Hadinegoro SR, Soepardi EJ, Ma’roef CN, Satari HI, Menzies H, Hawley WA, Powers AM, Rosenberg R, Myint KSA, Soebandrio A. 2018. Zika virus seropositivity in 1–4-year-old children, Indonesia, 2014. Emerg Infect Dis 24:1740–1743. DOI: 10.3201/eid2409.180582
Sasmono RT, Johar E, Yohan B, Ma’Roef CN, Pronyk P, Hadinegoro SR, Soepardi EJ, Bouckenooghe A, Hawley WA, Rosenberg R, Powers AM, Soebandrio A, Myint KSA. 2021. Spatiotemporal heterogeneity of Zika virus transmission in Indonesia: Serosurveillance data from a pediatric population. Am J Trop Med Hyg 104:2220–2223. DOI: 10.4269/ajtmh.21-0010
Schwaighofer A, Ablasser S, Lux L, Kopp J, Herwig C, Spadiut O, Lendl B, Slouka C. 2020. Production of active recombinant hyaluronidase inclusion bodies from Apis mellifera in E. coli BL21(DE3) and characterization by FT-IR spectroscopy. Int J Mol Sci 21:1–17. DOI: 10.3390/ijms21113881
Simmonds P, Becher P, Bukh J, Gould EA, Meyers G, Monath T, Muerhoff S, Pletnev A, Rico-Hesse R, Smith DB, Stapleton JT. 2017. ICTV virus taxonomy profile: Flaviviridae. J Gen Virol 98:2–3. DOI: 10.1099/jgv.0.000672
Snapper CM. 2018. Distinct immunologic properties of soluble versus particulate antigens. Front Immunol. DOI: 10.3389/fimmu.2018.00598
Song H, Qi J, Haywood J, Shi Y, Gao GF (2016) Zika virus NS1 structure reveals diversity of electrostatic surfaces among flaviviruses. Nat Struct Mol Biol 23:456–458. DOI: 10.1038/nsmb.3213
Stettler K, Beltramello M, Espinosa DA, Graham V, Cassotta A, Bianchi S, Vanzetta F, Minola A, Jaconi S, Mele F, Foglierini M, Pedotti M, Simonelli L, Dowall S, Atkinson B, Percivalle E, Simmons CP, Varani L, Blum J, Baldanti F, Cameroni E, Hewson R, Harris E, Lanzavecchia A, Sallusto F, Corti D. 2016. Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection. Science 353:823–826. DOI: 10.1126/science.aaf8505
Trinh NTM, Thuoc TL, Thao DTP. 2021. Production of recombinant human G-CSF from non-classical inclusion bodies in Escherichia coli. Brazilian J Microbiol 52:541–546. DOI: 10.1007/s42770-020-00413-y
Viranaicken W, Nativel B, Krejbich-Trotot P, Harrabi W, Bos S, El Kalamouni C, Roche M, Gadea G, Desprès P. 2017. ClearColi BL21(DE3)-based expression of Zika virus antigens illustrates a rapid method of antibody production against emerging pathogens. Biochimie 142:179–182. DOI: 10.1016/j.biochi.2017.09.011
Viranaicken W, Ndebo A, Bos S, Souque P, Gadea G, El-Kalamouni C, Krejbich-Trotot P, Charneau P, Desprès P, Roche M. 2018. Recombinant Zika NS1 protein secreted from vero cells is efficient for inducing production of immune serum directed against NS1 dimer. Int J Mol Sci. DOI: 10.3390/ijms19010038
WHO. 2022. Zika epidemiology update - February 2022. https://www.who.int/publications/m/item/zika-epidemiology-update---february-2022.
Xu X, Song H, Qi J, Liu Y, Wang H, Su C, Shi Y, Gao GF. 2016. Contribution of intertwined loop to membrane association revealed by Zika virus full?length NS1 structure. EMBO J 35:2170–2178. DOI: 10.15252/embj.201695290
Yang H, Zhang T, Xu K, Lei J, Wang L, Li Z, Zhang Z. 2011. A novel and convenient method to immunize animals: inclusion bodies from recombinant bacteria as antigen to directly immunize animals. African J Biotechnol 10:8146–8150. DOI: 10.5897/ajb10.2681
Yudhaputri FA, Trimarsanto H, Perkasa A, Yohan B, Haryanto S, Wiyatno A, Soebandrio A, Myint KS, Ledermann JP, Rosenberg R, Powers AM, Sasmono RT. 2017. Genomic characterization of Zika virus isolated from Indonesia. Virology 510:248–251. DOI: 10.1016/j.virol.2017.07.026.