Short Communication: Genetic diversity and identification of unique Omicron variant markers of SARS-CoV-2 in Indonesia

##plugins.themes.bootstrap3.article.main##

IDA B. K. SUARDANA
BAYU K. MAHARDIKA
ADHIYOGA A. A. N. A. SANTOSA
GUSTI N. MAHARDIKA

Abstract

Abstract. Suardana IBK, Mahardika BK, Santosa AAANA, Mahardika GN. 2024. Short Communication: Genetic diversity and identification of unique Omicron variant markers of SARS-CoV-2 in Indonesia. Biodiversitas 25: 1781-1787. The rapid and global spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused enormous socioeconomic disruptions, such as local and global travel, country or city lockdown, and manymore. We tested the hypothesis that global introduction and local substitution markers that are unique to Indonesia due to the global travel restrictions could be identified. All complete and high-coverage genomes of all Omicron variant sequences submitted from Indonesia were downloaded from the Global Initiative on Sharing All Influenza Data (GISAID), in October 27, 2022, and aligned with the Wuhan-Hu-1 strain and randomly selected Nextstrain Omicron clades. Genetic diversity was calculated using Tajima’s neutrality test, and phylogeny was constructed using the neighbour-joining method in Mega 11. The overall whole genome diversity of the Omicron variant detected in Indonesia is 0.0008, with the three highest coding region diversities being Open Reading Frame 6 (ORF6), Envelope, and Spike protein. The Tajima D value of the whole genome is -2.669, while the three highest Tajima values are ORF6, Envelope and ORF10. The phylogeny shows that there are 168 sequences of Indonesian Omicron variants, which do not share branches with Nextstrain Omicron clades. Unique amino acid substitutions to Wuhan-Hu-1 of the Omicron variants detected in Indonesia occurred in some coding regions, mainly in ORF1AB and Spike. We encourage country-based analysis as a lesson for future pandemic events.

##plugins.themes.bootstrap3.article.details##

References
Aiewsakun P, Nilplub P, Wongtrakoongate P, Hongeng S, Thitithanyanont A, 2021. SARS-CoV-2 genetic variations associated with COVID-19 pathogenicity. Microb Genom 7. DOI: 10.1099/mgen.0.000734.
Ansori ANM, Kharishma VD, Muttaqin SS, Antonius Y, Parikesit AA, 2020. Genetic Variant of SARS-CoV-2 Isolates in Indonesia: Spike Glycoprotein Gene. Journal of Pure and Applied Microbiology 14: 971-978. DOI: 10.22207/JPAM.14.SPL1.35
Bhatt S, Katzourakis A, Pybus OG, 2010. Detecting natural selection in RNA virus populations using sequence summary statistics. Infect Genet Evol 10: 421-430. DOI: 10.1016/j.meegid.2009.06.001.
Boekel L, Besten YR, Hooijberg F, Wartena R, Steenhuis M, Vogelzang E, Leeuw M, Atiqi S, Tas SW, Lems WF, van Ham SM, Eftimov F, Stalman EW, Wieske L, Kuijpers TW, Voskuyl AE, van Vollenhoven RF, Gerritsen M, Krieckaert C, Rispens T, Boers M, Nurmohamed MT, Wolbink G, 2022. SARS-CoV-2 breakthrough infections in patients with immune-mediated inflammatory diseases during the omicron dominant period. Lancet Rheumatol 4: e747-e750. DOI: 10.1016/S2665-9913(22)00221-1.
Grepin KA, Ho TL, Liu Z, Marion S, Piper J, Worsnop CZ, Lee K, 2021. Evidence of the effectiveness of travel-related measures during the early phase of the COVID-19 pandemic: a rapid systematic review. BMJ Glob Health 6. DOI: 10.1136/bmjgh-2020-004537.
Hahn G, Wu CM, Lee S, Lutz SM, Khurana S, Baden LR, Haneuse S, Qiao D, Hecker J, DeMeo DL, Tanzi RE, Choudhary MC, Etemad B, Mohammadi A, Esmaeilzadeh E, Cho MH, Li JZ, Randolph AG, Laird NM, Weiss ST, Silverman EK, Ribbeck K, Lange C, 2021. Genome-wide association analysis of COVID-19 mortality risk in SARS-CoV-2 genomes identifies mutation in the SARS-CoV-2 spike protein that colocalizes with P.1 of the Brazilian strain. Genet Epidemiol 45: 685-693. DOI: 10.1002/gepi.22421.
Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, Ludden C, Reeve R, Rambaut A, Consortium C-GU, Peacock SJ, Robertson DL, 2021. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol 19: 409-424. DOI: 10.1038/s41579-021-00573-0.
He J, Huang F, Zhang J, Chen Q, Zheng Z, Zhou Q, Chen D, Li J, Chen J, 2021. Vaccine design based on 16 epitopes of SARS-CoV-2 spike protein. J Med Virol 93: 2115-2131. DOI: 10.1002/jmv.26596.
Johnson AG, Amin AB, Ali AR, Hoots B, Cadwell BL, Arora S, Avoundjian T, Awofeso AO, Barnes J, Bayoumi NS, Busen K, Chang C, Cima M, Crockett M, Cronquist A, Davidson S, Davis E, Delgadillo J, Dorabawila V, Drenzek C, Eisenstein L, Fast HE, Gent A, Hand J, Hoefer D, Holtzman C, Jara A, Jones A, Kamal-Ahmed I, Kangas S, Kanishka F, Kaur R, Khan S, King J, Kirkendall S, Klioueva A, Kocharian A, Kwon FY, Logan J, Lyons BC, Lyons S, May A, McCormick D, Mendoza E, Milroy L, O'Donnell A, Pike M, Pogosjans S, Saupe A, Sell J, Smith E, Sosin DM, Stanislawski E, Steele MK, Stephenson M, Stout A, Strand K, Tilakaratne BP, Turner K, Vest H, Warner S, Wiedeman C, Zaldivar A, Silk BJ, Scobie HM, 2022. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence - 25 U.S. Jurisdictions, April 4-December 25, 2021. MMWR Morb Mortal Wkly Rep: 71: 132-138. DOI: 10.15585/mmwr.mm7104e2.
Kared H, Wolf AS, Alirezaylavasani A, Ravussin A, Solum G, Tran TT, Lund-Johansen F, Vaage JT, Nissen-Meyer LS, Nygaard UC, Hungnes O, Robertson AH, Naess LM, Trogstad L, Magnus P, Munthe LA, Mjaaland S, 2022. Immune responses in Omicron SARS-CoV-2 breakthrough infection in vaccinated adults. Nat Commun 13: 4165. DOI: 10.1038/s41467-022-31888-y.
Khare S, Gurry C, Freitas L, Schultz MB, Bach G, Diallo A, Akite N, Ho J, Lee RT, Yeo W, Curation Team GC, Maurer-Stroh S, 2021. GISAID's Role in Pandemic Response. China CDC Wkly 3: 1049-1051. DOI: 10.46234/ccdcw2021.255.Kim K, Omori R, Ito K, 2017. Inferring epidemiological dynamics of infectious diseases using Tajima's D statistic on nucleotide sequences of pathogens. Epidemics 21: 21-29. DOI: 10.1016/j.epidem.2017.04.004.
Mahardika GN, Mahendra NB, Mahardika BK, Suardana IBK, Pharmawati M, 2022. Annotating Spike Protein Polymorphic Amino Acids of Variants of SARS-CoV-2, Including Omicron. Biochem Res Int 2022: 2164749. DOI: 10.1155/2022/2164749.
Masters PS, 2006. The molecular biology of coronaviruses. Adv Virus Res 66: 193-292. DOI: 10.1016/S0065-3527(06)66005-3.
Meo SA, Meo AS, Al-Jassir FF, Klonoff DC, 2021. Omicron SARS-CoV-2 new variant: global prevalence and biological and clinical characteristics. Eur Rev Med Pharmacol Sci 25: 8012-8018. DOI: 10.26355/eurrev_202112_27652.
Millet JK, Whittaker GR, 2015. Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus Res 202: 120-134. DOI: 10.1016/j.virusres.2014.11.021.
Nei M, Kumar S, 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York.
Omori R, Wu J, 2017. Tajima's D and Site-Specific Nucleotide Frequency in a Population during an Infectious Disease Outbreak. SIAM Journal on Applied Mathematics 77: 2156-2171. DOI: 10.1137/17M1114946.
Shiino T, Okabe N, Yasui Y, Sunagawa T, Ujike M, Obuchi M, Kishida N, Xu H, Takashita E, Anraku A, Ito R, Doi T, Ejima M, Sugawara H, Horikawa H, Yamazaki S, Kato Y, Oguchi A, Fujita N, Odagiri T, Tashiro M, Watanabe H, 2010. Molecular evolutionary analysis of the influenza A(H1N1)pdm, May-September, 2009: temporal and spatial spreading profile of the viruses in Japan. PLoS One 5: e11057. DOI: 10.1371/journal.pone.0011057.
Suharsono H, Mahardika BK, Sudipa PH, Sari TK, Suardana IBK, Mahardika GN, 2023. Consensus insertion/deletions and amino acid variations of all coding and noncoding regions of the SARS-CoV-2 Omicron clades, including the XBB and BQ.1 lineages, PREPRINT (Version 1) available at Research Square. DOI: 10.21203/rs.3.rs-2400971/v1.
Tajima F, 1989. Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphis. Genetics 123: 585-595.
Tamura K, Stecher G, Kumar S, 2021. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol 38: 3022-3027. DOI: 10.1093/molbev/msab120.
Tian W, Li D, Zhang N, Bai G, Yuan K, Xiao H, Gao F, Chen Y, Wong CCL, Gao GF, 2021. O-glycosylation pattern of the SARS-CoV-2 spike protein reveals an "O-Follow-N" rule. Cell Res 31: 1123-1125. DOI: 10.1038/s41422-021-00545-2.
Vasquez-Aguilar AA, Barbachano-Guerrero A, Angulo DF, Jarquin-Diaz VH, 2021. Phylogeography and population differentiation in Hepatozoon canis (Apicomplexa: Hepatozoidae) reveal expansion and gene flow in world populations. Parasit Vectors 14: 467. DOI: 10.1186/s13071-021-04924-x.
Yadav PD, Nyayanit DA, Majumdar T, Patil S, Kaur H, Gupta N, Shete AM, Pandit P, Kumar A, Aggarwal N, Narayan J, Vijay N, Kalawat U, Sugunan AP, Munivenkatappa A, Sharma T, Devi S, Majumdar T, Jaryal S, Bakshi R, Joshi Y, Sahay R, Shastri J, Singh M, Kumar M, Rawat V, Dutta S, Yadav S, Krishnasamy K, Raut S, Biswas D, Borkakoty B, Verma S, Rani S, Deval H, Patel D, Turuk J, Malhotra B, Fomda B, Nag V, Jain A, Bhargava A, Potdar V, Cherian S, Abraham P, Gopal A, Panda S, Bhargava B, 2021. An Epidemiological Analysis of SARS-CoV-2 Genomic Sequences from Different Regions of India. Viruses 13. DOI: 10.3390/v13050925.
Yeh TY, Contreras GP, 2021. Tajima D test accurately forecasts Omicron medRxiv. DOI: 10.1101/2021.12.02.21267185.
Zhang BZ, Hu YF, Chen LL, Yau T, Tong YG, Hu JC, Cai JP, Chan KH, Dou Y, Deng J, Wang XL, Hung IF, To KK, Yuen KY, Huang JD, 2020. Mining of epitopes on spike protein of SARS-CoV-2 from COVID-19 patients. Cell Res 30: 702-704. DOI: 10.1038/s41422-020-0366-x.