A phenology-based linear spectral unmixing method for rice varieties identification from Landsat 8 Satellite Image in Ngawi District, East Java, Indonesia

##plugins.themes.bootstrap3.article.main##

IQBAL MAULANA CIPTA
LALU MUHAMAD JAELANI
HARTANTO SANJAYA

Abstract

Abstract. Cipta IM, Jaelani LM, Sanjaya H. 2024. A phenology-based linear spectral unmixing method for rice varieties identification from Landsat 8 Satellite Image in Ngawi District, East Java, Indonesia. Biodiversitas 25: 1691-1702. Ngawi District is a prominent rice-producing district in East Java, Indonesia. Based on the BPS data from 2021, Ngawi District yielded a total of 786.49 thousand tons of paddy. Multiple strategies to enhance rice production include enhancing rice productivity, increasing paddy fields, and using effective land management techniques. Utilizing a superior breed of seeds can augment productivity. Remote sensing can be utilized to obtain such data, one of which is the Linear Spectral Unmixing (LSU) technique. The LSU approach is used to determine the proportion of a pure object's presence in a pixel. The Inpari 32 rice variety is the predominant type identified from the analysis of the processing outcomes utilizing satellite imagery. In addition, validation was performed by utilizing many sample locations distributed around Ploso Lor and Rejuno Villages, resulting in consistent findings between the data analysis and the actual conditions observed in the field. The RMSE calculation was conducted on both sets of processing results, and the most optimal RMSE value was achieved when processing was performed using Landsat 8 image data, yielding an RMSE value of roughly ±1.2%. The accuracy of the model was evaluated using a confusion matrix, which yielded an overall accuracy rate of 86.67%.

##plugins.themes.bootstrap3.article.details##

References
Abdul-Rahaman A, Issahaku G, Zereyesus YA. 2021. Improved rice variety adoption and farm production efficiency: Accounting for unobservable selection bias and technology gaps among smallholder farmers in Ghana. Technol Soc 64: 101471. DOI: 10.1016/j.techsoc.2020.101471.
Bai L, Lin H, Sun H, Mo D, Yan E. 2012. Spectral unmixing approach in remotely sensed forest cover estimation: A study of subtropical forest in Southeast China. Phys Proc 25: 1055-1062. DOI: 10.1016/j.phpro.2012.03.199.
Bandumula N. 2018. Rice production in Asia: Key to global food security. Proc Natl Acad Sci India Sect B Biol Sci 88 (4): 1323-1328. DOI: 10.1007/s40011-017-0867-7.
Bhandari AK, Kumar A, Singh GK. 2012. Feature extraction using Normalized Difference Vegetation Index (NDVI): A case study of Jabalpur City. Proc Technol 6: 612-621. DOI: 10.1016/j.protcy.2012.10.074.
BPS. 2022. Produksi padi Jawa Timur Selama Tahun 2021 sebesar 9,789 Juta Ton Gabah Kering Giling. BPS Jawa Timur, Surabaya. https://jatim.bps.go.id/pressrelease/2022/03/01/1312/produksi-padi-jawa-timur-selama-tahun-2021-sebesar-9-789-juta-ton-gabah-kering-giling.html [Indonesian]
Chandrasekar K, Sesha SMVR, Roy PS, Dwevedi RS. 2010. Land Surface Water Index (LSWI) response to rainfall and NDVI using the MODIS Vegetation Index product. Intl J Remote Sens 31 (15): 3987-4005. DOI: 10.1080/01431160802575653.
Cipta IM, Jaelani LM, Sanjaya H. 2022. Identification of paddy varieties from Landsat 8 Satellite Image Data using Spectral Unmixing Method in Indramayu Regency, Indonesia. ISPRS Intl J Geoinf 11 (10): 510. DOI: 10.3390/ijgi11100510.
Daldegan GA, Roberts DA, Ribeiro FdeF. 2019. Spectral mixture analysis in Google Earth Engine to model and delineate fire scars over a large extent and a long time-series in a rainforest-savanna transition zone. Remote Sens Environ 232: 111340. DOI: 10.1016/j.rse.2019.111340.
Dineshkumar C, Nitheshnirmal S, Bhardwaj A, Priyadarshini KN. 2019. Phenological monitoring of paddy crop using time series MODIS Data. Proceedings 24 (1): 19. DOI: 10.3390/IECG2019-06205.
Gao X, Huete AR, Ni W, Miura T. 2000. Optical-biophysical relationships of vegetation spectra without background contamination. Remote Sens Environ 74 (3): 609-620. DOI: 10.1016/S0034-4257(00)00150-4.
Ghimire R, Huang W-C, Shrestha RB. 2015. Factors affecting adoption of improved rice varieties among rural farm households in Central Nepal. Rice Sci 22 (1): 35-43. DOI: 10.1016/S1672-6308(14)60278-X.
Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83 (1-2): 195-213. DOI: 10.1016/S0034-4257(02)00096-2.
Hussain S, Fujii T, McGoey S, Yamada M, Ramzan M, Akmal M. 2014. Evaluation of different rice varieties for growth and yield characteristics. J Anim Plant Sci 24 (5): 1504-1510.
Kärdi T. 2007. Remote sensing of urban areas: Linear Spectral Unmixing of Landsat Thematic Mapper images acquired over Tartu (Estonia). Estonian J Ecol 56 (1): 19-32. DOI: 10.3176/eco.2007.1.02.
Keshava N. 2003. A survey of spectral unmixing algorithms. Linc Lab J 14 (1): 55-78.
Keshava N, Mustard JF. 2002. Spectral unmixing. IEEE Signal Process Mag 19 (1): 44-57. DOI: 10.1109/79.974727.
Li CH, Tam PKS. 1998. An iterative algorithm for minimum cross entropy thresholding. Pattern Recognit Lett 19 (8): 771-776. DOI: 10.1016/S0167-8655(98)00057-9.
Liang L. 2019. Phenology. In: Reference Module in Earth Systems and Environmental Sciences. Elsevier. DOI: 10.1016/B978-0-12-409548-9.11739-7.
Maraseni TN, Deo RC, Qu J, Gentle P, Neupane PR. 2018. An international comparison of rice consumption behaviours and greenhouse gas emissions from rice production. J Clean Prod 172: 2288-2300. DOI: 10.1016/j.jclepro.2017.11.182.
Otsu N. 1979. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9 (1): 62-66. DOI: 10.1109/TSMC.1979.4310076.
Pal NR, Pal SK. 1993. A review on image segmentation techniques. Pattern Recognit 26 (9): 1277-1294. DOI: 10.1016/0031-3203(93)90135-J.
Potter C, Genovese V, Gross P, Boriah S, Steinbach M, Kumar V. 2007. Revealing land cover change in California with satellite data. EOS 88 (26): 269-274. DOI: 10.1029/2007EO260001.
Sarangi SK, Maji B, Singh S, Sharma DK, Burman D, Mandal S, Singh US, Ismail AM, Haefele SM. 2016. Using improved variety and management enhances rice productivity in stagnant flood-affected tropical coastal zones. Field Crop Res 190: 70-81. DOI: 10.1016/j.fcr.2015.10.024.
Singer RB, McCord TB. 1979. Mars: Large scale mixing of bright and dark surface materials and implications for analysis of spectral reflectance. Proc Lunar Planet Sci Conf 10th 2: 1835-1848.
Singh V, Zhou S, Ganie Z, Valverde B, Avila L, Marchesan E. 2017. Rice production in the Americas. In: Chauhan BS, Jabran K, Mahajan G (eds). Rice Production Worldwide. Springer, Cham. DOI: 10.1007/978-3-319-47516-5_6.
Szabó S, Gácsi Z, Balázs B. 2016. Specific features of NDVI, NDWI and MNDWI as reflected in land cover categories. Landsc Environ 10 (3-4): 194-202. DOI: 10.21120/le/10/3-4/13.
Tompolidi AM, Sykioti O, Koutroumbas K, Parcharidis I. 2020. Spectral unmixing for mapping a hydrothermal field in a volcanic environment applied on ASTER, Landsat-8/OLI, and Sentinel-2 MSI satellite multispectral data: The Nisyros (Greece) case study. Remote Sens 12 (24): 4180. DOI: 10.3390/rs12244180.
USDA. 2015. Grain: World Markets and trade, Foreign Agricultural Service. http://www.minagri.gob.ar/new/0-0/programas/dma/usda/grains/2015/2015-12-15.pdf
Wahyudi A, Kuwornu JKM, Gunawan E, Datta A, Nguyen LT. 2019. Factors influencing the frequency of consumers’ purchases of locally-produced rice in Indonesia: A Poisson Regression Analysis. Agriculture 9 (6): 117. DOI: 10.3390/agriculture9060117.
Weng Q, Lu D, Schubring J. 2004. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens Environ 89 (4): 467-483. DOI: 10.1016/j.rse.2003.11.005.
Xin F, Xiao X, Dong J, Zhang G, Zhang Y, Wu X, Li X, Zou Z, Ma J, Du G, Doughty RB, Zhao B, Li B. 2020. Large increases of paddy rice area, gross primary production, and grain production in Northeast China during 2000-2017. Sci Total Environ 711: 135183. DOI: 10.1016/j.scitotenv.2019.135183.
Xu X, Tong X, Plaza A, Zhong Y, Xie H, Zhang L. 2017. Using linear spectral unmixing for subpixel mapping of hyperspectral imagery: A quantitative assessment. IEEE J Sel Top Appl Earth Obs Remote Sens 10 (4): 1589-1600. DOI: 10.1109/JSTARS.2016.2624560.
Yu J, Chen D, Lin Y, Ye S. 2017. Comparison of linear and nonlinear spectral unmixing approaches: A case study with multispectral TM imagery. Intl J Remote Sens 38 (3): 773-795. DOI: 10.1080/01431161.2016.1271475.
Zhang X, Friedl MA, Schaaf CB, Strahler AH, Hodges JCF, Gao F, Reed BC, Huete A. 2003. Monitoring vegetation phenology using MODIS. Remote Sens Environ 84 (3): 471-475. DOI: 10.1016/S0034-4257(02)00135-9.
Zhao R, Li Y, Chen J, Ma M, Fan L, Lu W. 2021. Mapping a paddy rice area in a cloudy and rainy region using spatiotemporal data fusion and a phenology-based algorithm. Remote Sens 13 (21): 4400. DOI: 10.3390/rs13214400.