Exploring meiofaunal assemblages in Pujada Bay, Philippines: A glimpse into one of the world's most beautiful bays

##plugins.themes.bootstrap3.article.main##

CIRILO O. YBAÑEZ JR.

Abstract

Abstract. Ybañez JR CO. 2024. Exploring meiofaunal assemblages in Pujada Bay, Philippines: A glimpse into one of the world's most beautiful bays. Biodiversitas 25: 1946-1954. This study explores the meiofaunal communities within Pujada Bay's intertidal zone, Philippines, meticulously recording 18,193 individuals across 18 taxa. Differences in composition and abundance across sites were observed, with conservation efforts at Guang-guang yielding higher densities (4,613 ind/10 cm-2) compared to less-managed sites such as Magsaysay (928 ind/10 cm-2) and Badas (1,438 ind/10 cm-2). Furthermore, Macambol, distant from direct threats, exhibited notable densities (4,483 ind/10 cm-2), indicating the importance of geographic isolation in ecosystem preservation. Dominant taxa include Nematoda (41%), Copepoda (28%), Foraminifera (22%), and Polychaeta (5%), underscoring their ecological significance in Pujada Bay's meiofaunal community. These findings highlight the efficacy of conservation measures in fostering resilient meiofaunal communities, where management strategies and geographic location play vital roles in biodiversity preservation. This research offers valuable insights into the ecological dynamics of Pujada Bay, emphasizing the indispensable role of conservation in maintaining biodiversity. By elucidating meiofaunal dynamics, this study advances our understanding of the local marine ecosystem and lays the groundwork for broader discussions on marine conservation strategies. Pujada Bay, considered one of the most beautiful bays in the world, exemplifies the delicate balance between human activities and the imperative of preserving biodiversity in marine environments.

##plugins.themes.bootstrap3.article.details##

References
Baldrighi E, Grall J, Quillien N, Carriço R, Verdon V, Zeppilli D. 2019. Meiofauna communities’ response to an anthropogenic pressure: The case study of green macroalgal bloom on sandy beach in Brittany. Estuarine, Coastal and Shelf Science, 227, 106326. DOI: 10.1016/j.ecss.2019.106326
Balsamo M, Semprucci F, Frontalini F, Coccioni R. 2012. Meiofauna as a tool for marine ecosystem biomonitoring. Marine ecosystems, 4, 77-104. Intech, Croatia
Boltovskoy E, Scott DB, Medioli FS. 1991. Morphological variations of benthic foraminiferal tests in response to changes in ecological parameters: a review. Journal of Paleontology, 65(2), 175-185. DOI: 10.1017/S0022336000020394
Bongers T, Alkemade R, Yeates GW. 1991. Interpretation of disturbance-induced maturity decrease in marine nematode assemblages by means of the Maturity Index. Marine Ecology Progress Series, 135-142.
Burone L, Franco-Fraguas P, Carranza A, Calliari D, Michaelovitch de Mahiques M, Gómez M, Ortega L. 2021. Physical drivers and dominant oceanographic processes on the Uruguayan margin (Southwestern Atlantic): a review and a conceptual model. Journal of Marine Science and Engineering, 9(3), 304. DOI: 10.3390/jmse9030304
Cai L, Fu S, Yang J, Zhou X. 2012. Distribution of meiofaunal abundance in relation to environmental factors in Beibu Gulf, South China Sea. Acta Oceanologica Sinica, 31, 92-103. DOI: 10.1007/s13131-012-0256-2
Carugati L, Corinaldesi C, Dell'Anno A, Danovaro R. 2015. Metagenetic tools for the census of marine meiofaunal biodiversity: An overview. Marine genomics, 24, 11-20. DOI: 10.1016/j.margen.2015.04.010
Chinnadurai G, Fernando OJ. 2007. Meiofauna of mangroves of the southeast coast of India with special reference to the free-living marine nematode assemblage. Estuarine, Coastal and Shelf Science, 72(1-2), 329-336. DOI: 10.1016/j.ecss.2006.11.004
De Troch M, Melgo-Ebarle JL, Angsinco-Jimenez L, Gheerardyn H, Vincx M. 2008. Diversity and habitat selectivity of harpacticoid copepods from sea grass beds in Pujada Bay, the Philippines. Journal of the marine biological Association of the United Kingdom, 88(3), 515-526. DOI: 10.1017/S0025315408000805
De Troch M, Vandepitte L, Raes M, Suàrez-Morales E, Vincx M. 2005. A field colonization experiment with meiofauna and seagrass mimics: effect of time, distance and leaf surface area. Marine Biology, 148, 73-86. DOI: 10.1007/s00227-005-0062-x
Dizon EC, Geronimo RC, Quicho R. 2013. Benchmarking the management effectiveness of nationally-managed marine protected areas in the Philippines with policy recommendations: final report. Final report for USAID coral triangle support partnership (CTSP) and Conservation International–Philippines.
Du Y, Gao S, Warwick RM, Hua E. 2014. Ecological functioning of free-living marine nematodes in coastal wetlands: an overview. Chinese science bulletin, 59, 4692-4704. DOI: 10.1007/s11434-014-0592-z
Eleftheriou A, Moore DC. 2013. Macrofauna techniques. Methods for the study of marine benthos, 175-251. John Wiley and Sons, Ltd., UK
El-Serehy HA, Al-Misned FA, Al-Rasheid KA. 2015. Population fluctuation and vertical distribution of meiofauna in the Red Sea interstitial environment. Saudi Journal of Biological Sciences, 22(4), 459-465. DOI: 10.1016/j.sjbs.2015.02.018
Felix M, Ybanez Jr C, Macusi E. 2022. Assemblages of Benthic Foraminifera in Pujada Island, Davao Oriental, Philippines. Davao Research Journal, 13(1), 91-111. DOI: 10.59120/drj.v13i1.92
Giangrande A, Licciano M, Musco L. 2005. Polychaetes as environmental indicators revisited. Marine Pollution Bulletin, 50(11), 1153-1162. DOI: 10.1016/j.marpolbul.2005.08.003
Giere O. 2008. Meiobenthology: the microscopic motile fauna of aquatic sediments. Springer, Verlag Berlin, Heidelberg.
Giere O. 2009. Meiofauna Taxa: A Systematic Account. In: Meiobenthology. Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-540-68661-3_5
Heip CH, Herman PM. 1995. Major biological processes in European tidal estuaries (Vol. 110). Springer Science & Business Media, Belgium.
Higgins RP, Thiel H. 1988. Introduction to the study of meiofauna. Smithsonian Institution Press
Ingels J, Hasemann C, Soltwedel T, Vanreusel A. 2023b. Polar Meiofauna—Antipoles or Parallels?. In New Horizons in Meiobenthos Research: Profiles, Patterns and Potentials (pp. 285-327). Cham: Springer International Publishing. DOI: 10.1007/978-3-031-21622-0_9
Ingels J, Leduc D, Zeppilli D, Vanreusel A. 2023a. Deep-Sea Meiofauna—A World on Its Own or Deeply Connected?. In New Horizons in Meiobenthos Research: Profiles, Patterns and Potentials (pp. 257-283). Cham: Springer International Publishing. DOI: 10.1007/978-3-031-21622-0_8
Jagadeesan L, Jyothibabu R, Arunpandi N, Parthasarathi S. 2017. Copepod grazing and their impact on phytoplankton standing stock and production in a tropical coastal water during the different seasons. Environmental monitoring and assessment, 189, 1-21. DOI: 10.1007/s10661-017-5804-y
Mascart T, Lepoint G, Deschoemaeker S, Binard M, Remy F, De Troch M. 2015. Seasonal variability of meiofauna, especially harpacticoid copepods, in Posidonia oceanica macrophytodetritus accumulations. Journal of Sea Research, 95, 149-160. DOI: 10.1016/j.seares.2014.07.009
Mevenkamp L, Van Campenhout J, Vanreusel A. 2016. Experimental evidence for selective settlement of meiofauna from two distinct environments after sediment suspension. Journal of Experimental Marine Biology and Ecology, 474, 195-203. DOI: 10.1016/j.jembe.2015.10.005
Moens T, Beninger PG. 2018. Meiofauna: an inconspicuous but important player in mudflat ecology. Mudflat ecology, 91-147. DOI: 10.1007/978-3-319-99194-8_5
Moens T, Vincx M. 2000. Temperature, salinity and food thresholds in two brackish-water bacterivorous nematode species: assessing niches from food absorption and respiration experiments. Journal of experimental marine biology and ecology, 243(1), 137-154. DOI: 10.1016/S0022-0981(99)00114-8
Montagna PA, Baguley JG, Hsiang CY, Reuscher MG. 2017. Comparison of sampling methods for deep?sea infauna. Limnology and oceanography: Methods, 15(2), 166-183. DOI: 10.1002/lom3.10150
Prazeres M, Martínez-Colón M, Hallock P. 2020. Foraminifera as bioindicators of water quality: The FoRAM Index revisited. Environmental Pollution, 257, 113612. DOI: 10.1016/j.envpol.2019.113612
Ptatscheck C, Traunspurger W. 2020. The ability to get everywhere: dispersal modes of free-living, aquatic nematodes. Hydrobiologia, 847(17), 3519-3547. DOI: 10.1007/s10750-020-04373-0
Ptatscheck C, Brüchner-Hüttemann H, Kreuzinger-Janik B, Weber S, Traunspurger W. 2020. Are meiofauna a standard meal for macroinvertebrates and juvenile fish?. Hydrobiologia, 847, 2755-2778. DOI: 10.1007/s10750-020-04189-y
Pulido-Chadid K, Virtanen E, Geldmann J. 2023. How effective are protected areas for reducing threats to biodiversity? A systematic review protocol. Environmental Evidence, 12(1), 18. DOI: 10.1186/s13750-023-00311-4
Ponce RG, Villegas JP. 2022. Beyond Sustainability: Positioning Regenerative Futures in a Philippine State University. Discourse and Communication for Sustainable Education, 13(2), 5-12. DOI: 10.2478/dcse-2022-0014
Schmidt C, Sattarova VV, Katrynski L, Arbizu PM. 2019. New insights from the deep: Meiofauna in the Kuril-Kamchatka Trench and adjacent abyssal plain. Progress in Oceanography, 173, 192-207. DOI: 10.1016/j.pocean.2019.02.010
Schmidt-Rhaesa A. 2014. Handbook of zoology. Gastrotricha, cycloneuralia and gnathifera. Nematoda, Belgium: De Gruter
Schratzberger M, Ingels J. 2017. Meiofauna matters: the roles of meiofauna in benthic ecosystems. Journal of Experimental Marine Biology and Ecology, 502, 12-25. DOI: 10.1016/j.jembe.2017.01.007
Schratzberger M, Somerfield PJ. 2020. Effects of widespread human disturbances in the marine environment suggest a new agenda for meiofauna research is needed. Science of the Total Environment, 728, 138435. DOI: 10.1016/j.scitotenv.2020.138435
Schratzberger M, Danovaro R, Ingels J, Montagna PA, Rohal Lupher M, Semprucci F, Somerfield PJ. 2023. Hidden Players—Meiofauna Mediate Ecosystem Effects of Anthropogenic Disturbances in the Ocean. In New Horizons in Meiobenthos Research: Profiles, Patterns and Potentials (pp. 175-255). Cham: Springer International Publishing. DOI: 10.1007/978-3-031-21622-0_7
Schuelke T, Pereira TJ, Hardy SM, Bik, HM. 2018. Nematode?associated microbial taxa do not correlate with host phylogeny, geographic region or feeding morphology in marine sediment habitats. Molecular ecology, 27(8), 1930-1951. DOI: 10.1111/mec.14539
Semprucci F, Losi V, Moreno M. 2015. A review of Italian research on free-living marine nematodes and the future perspectives on their use as Ecological Indicators (EcoInds). Mediterranean Marine Science, 16(2), 352-365. DOI: 10.12681/mms.1072
Somerfield PJ, Warwick RM. 2013. Meiofauna techniques. Methods for the study of marine benthos, 253-284. Wiley Online Library. DOI: https://doi.org/10.1002/9781118542392.ch6
Sommer U, Stibor H. 2002. Copepoda–Cladocera–Tunicata: the role of three major mesozooplankton groups in pelagic food webs. Ecological Research, 17, 161-174. DOI: 10.1046/j.1440-1703.2002.00476.x
Steyaert M, Vanaverbeke J, Vanreusel A, Barranguet C, Lucas C, Vincx M. 2003. The importance of fine-scale, vertical profiles in characterising nematode community structure. Estuarine, Coastal and Shelf Science, 58(2), 353-366. DOI: 10.1016/S0272-7714(03)00086-6
Suzuki KW, Nakayama K, Tanaka M. 2013. Distinctive copepod community of the estuarine turbidity maximum: comparative observations in three macrotidal estuaries (Chikugo, Midori, and Kuma Rivers), southwestern Japan. Journal of oceanography, 69, 15-33. DOI: 10.1007/s10872-012-0151-7
Terayama K, Mizuno K, Tabeta S, Sakamoto S, Sugimoto Y, Sugimoto K, Jimenez LA. 2022. Cost?effective seafloor habitat mapping using a portable speedy sea scanner and deep?learning?based segmentation: A sea trial at Pujada Bay, Philippines. Methods in Ecology and Evolution, 13(2), 339-345. DOI: 10.1111/2041-210X.13744
Vanreusel A, De Groote A, Gollner S, Bright M. 2010. Ecology and biogeography of free-living nematodes associated with chemosynthetic environments in the deep sea: a review. PLoS One, 5(8), e12449. DOI: 10.1371/journal.pone.0012449
Wang F, Lin D, Li W, Dou P, Han L, Huang M, Yao J. 2020. Meiofauna promotes litter decomposition in stream ecosystems depending on leaf species. Ecology and Evolution, 10(17), 9257-9270. DOI: 10.1002/ece3.6610
Wang X, Liu X, Xu J. 2019. Distribution patterns of meiofauna assemblages and their relationship with environmental factors of deep sea adjacent to the Yap Trench, Western Pacific Ocean. Frontiers in Marine Science, 6, 735. DOI: 10.3389/fmars.2019.00735
Willems WR, Curini-Galletti M, Ferrero TJ, Fontaneto D, Heiner I, Huys R, Jondelius U. 2009. Meiofauna of the Koster-area, results from a workshop at the Sven Lovén Centre for Marine Sciences (Tjärnö, Sweden). Meiofauna Marina, 17, 1-34. Verlag Germany
Xuan QN, Vanreusel A, Thanh NV, Smol N. 2007. Biodiversity of meiofauna in the intertidal Khe Nhan mudflat, Can Gio mangrove forest, Vietnam with special emphasis on free living nematodes. Ocean Science Journal, 42, 135-152. DOI: 10.1007/BF03020918
Zeppilli D, Leduc D, Fontanier C, Fontaneto D, Fuchs S, Gooday AJ, Fernandes D. 2018. Characteristics of meiofauna in extreme marine ecosystems: a review. Marine Biodiversity, 48, 35-71. DOI: 10.1007/s12526-017-0815-z
Zeppilli D, Sarrazin J, Leduc D, Arbizu PM, Fontaneto D, Fontanier C, Fernandes D. 2015. Is the meiofauna a good indicator for climate change and anthropogenic impacts?. Marine Biodiversity, 45, 505-535. DOI: 10.1007/s12526-015-0359-z