Production and diversity analysis of cellulases from Anoxybacillus genus




Abstract. Sanjaya RE, Puspaningsih NNT, Rohman A, Rahmasari H, Illias RM, Jantarit N, Fujiyama K, Pratama A, Khairunnisa F. 2024. Production and diversity analysis of cellulases from Anoxybacillus genus. Biodiversitas 25: 2705-2718. Bioconversion of cellulose into sustainable renewable resources of oligosaccharides and glucose requires cellulase action. Genomic sequences of Anoxybacillus cellulases are available in GenBank databases, but no information about their biochemical properties. Anoxybacillus flavithermus TP-01 is a thermophilic, facultatively anaerobic, cellulase-producing bacterium isolated from the mountain of Gunung Pancar hot springs, Bogor, Indonesia. This study aimed to characterize the cellulase produced by Anoxybacillus flavithermus TP-01, a local Indonesian isolate. This cellulase was characterized and the diversity analysis on biochemical properties and structural characteristics was done by in silico approaches. SOPMA, SWISS-MODEL, I-TASSER, ProSA, and SAVES were used for computational analysis on physicochemical characterization, phylogenetic construction, functional analysis, multiple sequence alignment, and secondary-tertiary structure prediction. Physicochemical analysis showed pI<7, indicating acidic property for these proteins. Furthermore, the proteins were thermostable and hydrophilic, as proved by their relatively high aliphatic index and negative GRAVY values. The five sequence motifs harbored a conserved domain of the M42 peptidase/endoglucanase family. Alpha helix was the predominant secondary structure, and the tertiary structure fulfilled the structural quality criteria of QMEAN4, ERRAT, Ramachandran plot, and Z-score. Structural comparison between the template structure and the models revealed significant differences in the loop sections. This study identified a potentially thermostable cellulase of Anoxybacillus flavithermus TP-01, and provided new insights of the physicochemical, functional, and explores the structure-function relationship of cellulase from Anoxybacillus genus based on in silico data.


Bailey TL, Johnson J, Grant CE, Noble WS. 2015. The MEME Suite. Nucleic Acids Res 43:W39–W49. DOI:10.1093/nar/gkv416
Bajaj P, Mahajan R. 2019. Cellulase and xylanase synergism in industrial biotechnology. Appl Microbiol Biotechnol 103:8711–8724. DOI:10.1007/s00253-019-10146-0
Bertoni M, Kiefer F, Biasini M, Bordoli L, Schwede T. 2017. Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Sci Rep 7:1–15. DOI:10.1038/s41598-017-09654-8
Bhardwaj N, Kumar B, Agrawal K, Verma P. 2021. Current perspective on production and applications of microbial cellulases: a review. Bioresour. Bioprocess. 8:1–34
Bhattacharya M, Hota A, Kar A, Sankar Chini D, Chandra Malick R, Chandra Patra B, Kumar Das B. 2018. In silico structural and functional modelling of Antifreeze protein (AFP) sequences of Ocean pout (Zoarces americanus, Bloch & Schneider 1801). J Genet Eng Biotechnol 16:721–730. DOI:10.1016/j.jgeb.2018.08.004
Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T. 2014. SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252-8. DOI:10.1093/nar/gku340
Bienert S, Waterhouse A, De Beer TAP, Tauriello G, Studer G, Bordoli L, Schwede T. 2017. The SWISS-MODEL Repository-new features and functionality. Nucleic Acids Res 45:D313–D319. DOI:10.1093/nar/gkw1132
Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. DOI:10.1016/0003-2697(76)90527-3
Corbella M, Pinto GP, Kamerlin SCL. 2023. Loop dynamics and the evolution of enzyme activity. Nat Rev Chem 7:536–547. DOI:10.1038/s41570-023-00495-w
Dar MA, Pawar KD, Rajput BP, Rahi P, Pandit RS. 2019. Purification of a cellulase from cellulolytic gut bacterium, Bacillus tequilensis G9 and its evaluation for valorization of agro-wastes into added value byproducts. Biocatal Agric Biotechnol 20:101219. DOI:10.1016/J.BCAB.2019.101219
Duong-Ly KC, Gabelli SB. 2014. Salting out of proteins using ammonium sulfate precipitation. In: Lorsch J (ed) Methods in Enzymology. Academic Press Inc., pp 85–94
Dutta B, Banerjee A, Chakraborty P, Bandopadhyay R. 2018. In silico studies on bacterial xylanase enzyme: Structural and functional insight. J Genet Eng Biotechnol 16:749–756. DOI:10.1016/j.jgeb.2018.05.003
Dutta B, Deska J, Bandopadhyay R, Shamekh S. 2021. In silico characterization of bacterial chitinase: illuminating its relationship with archaeal and eukaryotic cousins. J Genet Eng Biotechnol 19:19. DOI:10.1186/s43141-021-00121-6
Duvaud S, Gabella C, Lisacek F, Stockinger H, Ioannidis V, Durinx C. 2021. Expasy, the Swiss Bioinformatics Resource Portal, as designed by its users. Nucleic Acids Res 49:W216–W227. DOI:10.1093/nar/gkab225
Ejaz U, Sohail M, Ghanemi A. 2021. Cellulases: From bioactivity to a variety of industrial applications. Biomimetics 6:1–11. DOI:10.3390/biomimetics6030044
Gamage DG, Gunaratne A, Periyannan GR, Russell TG. 2019. Applicability of instability index for in vitro protein stability prediction. Protein Pept Lett 26:339–347. DOI:10.2174/0929866526666190228144219
Gaur R, Tiwari S. 2015. Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC Biotechnol 15:. DOI:10.1186/S12896-015-0129-9
Genc B, Nadaroglu H, Adiguzel A, Baltaci O. 2015. Purification and characterization of an extracellular cellulase from Anoxybacillus gonensis O9 isolated from geothermal area in Turkey. J Environ Biol 36:1319–24
Hoda A, Tafaj M, Sallaku E. 2021. In silico Structural, functional and phylogenetic analyses of cellulase from Ruminococcus albus. J Genet Eng Biotechnol 19:58. DOI:10.1186/s43141-021-00162-x
Hussain AA, Abdel-Salam MS, Abo-Ghalia HH, Hegazy WK, Hafez SS. 2017. Optimization and molecular identification of novel cellulose degrading bacteria isolated from Egyptian environment. J Genet Eng Biotechnol 15:77–85. DOI:10.1016/j.jgeb.2017.02.007
Ibrahim ASS, El-diwany AI. 2007. Isolation and identification of new cellulases producing thermophilic bacteria from an Egyptian hot spring and some properties of the crude enzyme. Aust J Basic Appl Sci 1:473–478
Islam F, Roy N. 2018. Screening, purification and characterization of cellulase from cellulase producing bacteria in molasses. BMC Res Notes 11:445. DOI:10.1186/s13104-018-3558-4
Jaramillo PMD, Gomes HAR, Monclaro A V., Silva COG, Filho EXF. 2015. Lignocellulose-degrading enzymes. In: Gupta VK, Mach RL, Sreenivasaprasad S (eds) Fungal Biomolecules: Sources, Applications and Recent Developments. John Wiley & Sons, Ltd, Chichester, UK, pp 73–85
Juturu V, Wu JC. 2014. Microbial cellulases: Engineering, production and applications. Renew Sustain Energy Rev 33:188–203. DOI:10.1016/j.rser.2014.01.077
Kantardjieff KA, Rupp B. 2004. Protein isoelectric point as a predictor for increased crystallization screening efficiency. Bioinformatics 20:2162–2168. DOI:10.1093/bioinformatics/bth066
Khoshnevisan K, Poorakbar E, Baharifar H, Barkhi M. 2019. Recent advances of cellulase immobilization onto magnetic nanoparticles: An update review. Magnetochemistry 5:36. DOI:10.3390/magnetochemistry5020036
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. DOI:10.1093/molbev/msy096
Laras GA, Handayani MN, Yamani LN, Purwani NN, Purkan, Puspaningsih NNT. 2017. Identification and characterization of thermophilic and pectinolytic bacteria isolated from gunung pancar hot spring bogor, Indonesia. Asian J Microbiol Biotechnol Environ Sci 19:496–508
Loow YL, New EK, Yang GH, Ang LY, Foo LYW, Wu TY. 2017. Potential use of deep eutectic solvents to facilitate lignocellulosic biomass utilization and conversion. Cellulose 24:3591–3618. DOI:10.1007/s10570-017-1358-y
Lugani Y, Sooch BS. 2017. In silico Characterization of cellulases from genus Bacillus. Int J Curr Res Rev 9:3–10. DOI:10.7324/IJCRR.2017.9136
Ma L, Zhao Y, Meng L, Wang X, Yi Y, Shan Y, Liu B, Zhou Y, Lü X. 2020. Isolation of Thermostable Lignocellulosic Bacteria From Chicken Manure Compost and a M42 Family Endocellulase Cloning From Geobacillus thermodenitrificans Y7. Front Microbiol 11:. DOI:10.3389/fmicb.2020.00281
Merino N, Aronson HS, Bojanova DP, Feyhl-Buska J, Wong ML, Zhang S, Giovannelli D. 2019. Living at the extremes: Extremophiles and the limits of life in a planetary context. Front Microbiol 10:. DOI:10.3389/fmicb.2019.00780
Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. DOI:10.1021/ac60147a030
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A, Lanfear R, Teeling E. 2020. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37:1530–1534. DOI:10.1093/molbev/msaa015
Nene T, Yadav M, Yadav HS. 2022. Plant catalase in silico characterization and phylogenetic analysis with structural modeling. J Genet Eng Biotechnol 20:1–18. DOI:10.1186/S43141-022-00404-6/FIGURES/8
Nisar K, Abdullah R, Kaleem A, Iqtedar M, Aftab M, Saleem F. 2022. Purification, characterization and thermodynamic analysis of cellulases produced from Thermomyces dupontii and its industrial applications. Saudi J Biol Sci 29:103483. DOI:10.1016/j.sjbs.2022.103483
Okereke OE, Akanya HO, Egwim EC. 2017. Purification and characterization of an acidophilic cellulase from Pleurotus ostreatus and its potential for agrowastes valorization. Biocatal Agric Biotechnol 12:253–259. DOI:10.1016/J.BCAB.2017.10.018
Pachauri P, Aranganathan V, More S, Sullia SB, Deshmukh S. 2020. Purification and characterization of cellulase from a novel isolate of Trichoderma longibrachiatum. Biofuels 11:85–91. DOI:10.1080/17597269.2017.1345357
Patel AK, Singhania RR, Sim SJ, Pandey A. 2019. Thermostable cellulases: Current status and perspectives. Bioresour Technol 279:385–392. DOI:10.1016/j.biortech.2019.01.049
Pergande M, Cologna S. 2017. Isoelectric Point Separations of Peptides and Proteins. Proteomes 5:1–14. DOI:10.3390/proteomes5010004
Pramanik K, Ghosh PK, Ray S, Sarkar A, Mitra S, Maiti TK. 2017. An in silico structural, functional and phylogenetic analysis with three dimensional protein modeling of alkaline phosphatase enzyme of Pseudomonas aeruginosa. J Genet Eng Biotechnol 15:527–537. DOI:10.1016/j.jgeb.2017.05.003
Pramanik K, Kundu S, Banerjee S, Ghosh PK, Maiti TK. 2018. Computational-based structural, functional and phylogenetic analysis of Enterobacter phytases. 3 Biotech 8:1–12. DOI:10.1007/s13205-018-1287-y
Robert X, Gouet P. 2014. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42:W320–W324. DOI:10.1093/nar/gku316
Sanjaya RE, Putri KDA, Kurniati A, Rohman A, Puspaningsih NNT. 2021. In silico characterization of the GH5-cellulase family from uncultured microorganisms: physicochemical and structural studies. J Genet Eng Biotechnol 19:143. DOI:10.1186/s43141-021-00236-w
Santhoshkumar R, Yusuf A. 2020. In silico structural modeling and analysis of physicochemical properties of curcumin synthase (CURS1, CURS2, and CURS3) proteins of Curcuma longa. J Genet Eng Biotechnol 18:. DOI:10.1186/s43141-020-00041-x
Septiani DIA, Suryadi H, Mun’im A, Mangunwardoyo W. 2019. Production of cellulase from Aspergillus niger and Trichoderma reesei mixed culture in carboxymethylcellulose medium as sole carbon. Biodiversitas J Biol Divers 20:3539–3544. DOI:10.13057/BIODIV/D201211
Sharif S, Shah AH, Fariq A, Jannat S, Rasheed S, Yasmin A. 2023. Optimization of amylase production using response surface methodology from newly isolated thermophilic bacteria. Heliyon 9:e12901. DOI:10.1016/j.heliyon.2023.e12901
Sharma D, Sharma P, Dev K, Sourirajan A. 2019. Endoglucanase gene of M42 aminopeptidase/endoglucanase family from thermophilic Bacillus sp. PW1 and PW2 isolated from Tattapani hot spring, Himachal Pradesh, India. J Genet Eng Biotechnol 17:4. DOI:10.1186/s43141-019-0001-8
Tiwari R, Nain L, Labrou NE, Shukla P. 2018. Bioprospecting of functional cellulases from metagenome for second generation biofuel production: a review. Crit Rev Microbiol 44:244–257. DOI:10.1080/1040841X.2017.1337713
Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 44:W232–W235. DOI:10.1093/nar/gkw256
Vidhya VG, Swarnalatha Y, Bhaskar A. 2018. An in silico analysis of physicochemical characterization and protein-protein interaction network analysis of human anti-apoptotic proteins. Asian J Pharm 12:S1397–S1407
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, De Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T. 2018. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303. DOI:10.1093/nar/gky427
Wingfield PT. 2016. Protein precipitation using ammonium sulfate. Curr Protoc Protein Sci 2016:A.3F.1-A.3F.9. DOI:10.1002/0471140864.psa03fs84
Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. 2014. The I-TASSER suite: Protein structure and function prediction. Nat Methods 12:7–8. DOI:10.1038/nmeth.3213
Yang J, Zhang Y. 2015. I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Res 43:W174–W181. DOI:10.1093/nar/gkv342
Zhang B, Li J, Lü Q. 2018. Prediction of 8-state protein secondary structures by a novel deep learning architecture. BMC Bioinformatics 19:1–13. DOI:10.1186/s12859-018-2280-5
Zheng F, Tu T, Wang X, Wang Y, Ma R, Su X, Xie X, Yao B, Luo H. 2018. Enhancing the catalytic activity of a novel GH5 cellulase GtCel5 from Gloeophyllum trabeum CBS 900.73 by site-directed mutagenesis on loop 6. Biotechnol Biofuels 11:76. DOI:10.1186/s13068-018-1080-5
Zheng W, Zhang C, Li Y, Pearce R, Bell EW, Zhang Y. 2021. Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. Cell Reports Methods 1:100014. DOI:10.1016/j.crmeth.2021.100014
Zhou X, Zheng W, Li Y, Pearce R, Zhang C, Bell EW, Zhang G, Zhang Y. 2022. I-TASSER-MTD: a deep-learning-based platform for multi-domain protein structure and function prediction. Nat Protoc 17:2326–2353. DOI:10.1038/s41596-022-00728-0.

Most read articles by the same author(s)