Microbial consortium formulation in liquid organic fertilizer for managing bacterial leaf blight (Xanthomonas oryzae pv. oryzae), rice blast (Pyricularia oryzae), and enhancing rice productivity

##plugins.themes.bootstrap3.article.main##

SUHARTININGSIH DWI NURCAHYANTI
https://orcid.org/0000-0002-5160-1709
RACHMI MASNILAH
https://orcid.org/0009-0008-0471-1068
SUBHAN ARIF BUDIMAN
https://orcid.org/0000-0001-5704-6120
AHMAD ILHAM TANZIL
https://orcid.org/0000-0002-5523-3632
ANGGI ANWAR HENDRA NURDIKA
https://orcid.org/0000-0002-6895-2687

Abstract

Abstract. Nurcahyanti SD, Masnilah R, Budiman SA, Tanzil AI, Nurdika AAH. 2024. Microbial consortium formulation in liquid organic fertilizer for managing bacterial leaf blight (Xanthomonas oryzae pv. oryzae), rice blast (Pyricularia oryzae), and enhancing rice productivity. Biodiversitas 25: 2208-2220. The productivity of rice is significantly influenced by soil fertility and plant diseases as limiting factors. The overreliance on synthetic fertilizers and pesticides in rice cultivation has led to declining land quality. We propose the utilization of Liquid Organic Fertilizers (LOF) enriched with beneficial microbes as a sustainable solution to maintain soil fertility and protect plants from pathogens. Our research specifically focuses on the formulation of LOF enriched with the microbial consortium to enhance rice productivity and suppress bacterial leaf blight (Xanthomonas oryzae pv. oryzae), and rice blast (Pyricularia oryzae) diseases. The three LOF treatments were formulated from vegetable and fruit waste (FV), Rice Straw (RS), and Cattle Manure (CM) with a microbial consortium consisting of Pseudomonas putida Pf10, Bacillus subtilis JB12, and Trichoderma sp. The results showed that the LOF from the three materials is suitable for the growth of the microbial consortium with a population of 104-109 CFU/mL, has macro-micronutrient content, pH at 6.5-6.8, and C-organic to support plant growth. The applications of the three types of LOF were able to suppress the severity of bacterial leaf blight by up to 21% and rice blast by 4% at eight weeks after inoculation. All LOF treatments are capable of enhancing the growth and production of rice. There were no significant differences in LOF materials for disease suppression, growth, and rice production.

##plugins.themes.bootstrap3.article.details##

References
Bahua MI, & Gubali H. 2020. Direct seed planting system and giving liquid organic fertilizer as a new method to increase rice yield and growth (Oryza sativa L.). Agrivita 42(1):68–77. DOI: 10.17503/agrivita.v42i1.2324.
Balai Penelitian Tanah. 2005. Petunjuk teknis analisis kimia tanah, tanaman, air, dan pupuk. Badan Penelitian dan Pengembangan Pertanian Departemen Pertanian,. Bogor.
Chou C, Castilla N, Hadi B, Tanaka T, Chiba, S, & Sato I. 2020. Rice blast management in Cambodian rice fields using Trichoderma harzianum and a resistant variety. Crop Protection 135:1-7. DOI: 10.1016/j.cropro.2019.104864.
Denaya S, Yulianti R, Pambudi A, & Effendi, Y. 2021. Novel microbial consortium formulation as plant growth promoting bacteria (PGPB) agent. IOP Conference Series: Earth and Environmental Science 637(1). DOI: 10.1088/1755-1315/637/1/012030.
Dimki? I, Janakiev T, Petrovi? M, Degrassi G, & Fira D. 2022. Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms - A review. Physiological and Molecular Plant Pathology 117(101754):1-13. DOI: 10.1016/J.PMPP.2021.101754.
Domenico P. (2019). Effective microorganisms for the cultivation and qualitative improvement of onion (Allium cepa L.). World Journal of Advanced Research and Reviews 03:2581–9615. DOI: 10.30574/wjarr.
Doni F, Suhaimi NSM, Mispan MS, Fathurrahman F, Marzuki BM., Kusmoro J, & Uphoff N. 2022. Microbial Contributions for Rice Production: From Conventional Crop Management to the Use of ‘Omics’ Technologies. International Journal of Molecular Sciences MDPI 23(2):1-22. DOI: 10.3390/ijms23020737.
Ginting J. 2019. Effect of liquid organic fertilizer on the rice varieties field production. IOP Conference Series: Earth and Environmental Science 260 (1). DOI: 10.1088/1755-1315/260/1/012177.
Guzmán-Guzmán P, Kumar A, De los Santos-Villalobos S., Parra-Cota FI, Orozco-Mosqueda MDC, Fadiji A.E, Hyder S, Babalola OO, & Santoyo G. 2023. Trichoderma Species: Our Best Fungal Allies in the Biocontrol of Plant Diseases—A Review. Plants MDPI 12(3): 1-35. DOI: 10.3390/plants12030432.
International Rice Research Institute (IRRI). 2002. Standard Evaluation System for Rice (SES). International Rice Research Institute (IRRI), Manila.
Islam MR, Chowdhury R, Roy AS, Islam MN, Mita MM, Bashar S, Saha P, Rahat RA, Hasan M, Akter MA, Alam MZ, & Latif MA. 2023. Native Trichoderma Induced the Defense-Related Enzymes and Genes in Rice against Xanthomonas oryzae pv. oryzae (Xoo). Plants 12(9):1-20. DOI: 10.3390/plants12091864.
Ji R, Dong G, Shi W, & Min J. 2017. Effects of liquid organic fertilizers on plant growth and rhizosphere soil characteristics of chrysanthemum. Sustainability (Switzerland) 9 (5): 1–16. DOI: 10.3390/su9050841.
Kadeawi S, Swaruno, Nasution A, Hairmansis A., Telebanco-Yanoria MJ, Obara M, Hayashi N, & Fukuta Y. 2021. Pathogenicity of isolates of the rice blast pathogen (pyricularia oryzae) from Indonesia. Plant Disease05 (3):675–683. DOI: 10.1094/PDIS-05-20-0949-RE.
Kurniawati S, Astuti Y, Hidayat YS, & Susanti EY. 2021. Implementation of Eco-friendly Technologies to Control Bacterial Leaf Blight of Rice Disease (Xanthomonas oryzae pv. oryzae). IOP Conference Series: Earth and Environmental Science 715(1). DOI:10.1088/1755-1315/715/1/012041.
Lesik MMNN, Dadi O, Wahida, Andira G, & Laban S. 2019. Nutrient analysis of liquid organic fertilizer from agricultural waste and rumen liquid. IOP Conference Series: Earth and Environmental Science 343(1). DOI: 10.1088/1755-1315/343/1/012178.
Maciag T, Kozie? E, Rusin P, Otulak-Kozie? K, Jafra S, & Czajkowski R. 2023. Microbial Consortia for Plant Protection against Diseases: More than the Sum of Its Parts. International Journal of Molecular Sciences MDPI 24(15). DOI: 10.3390/ijms241512227.
Mandal N, Adak S, Das DK, Sahoo RN, Mukherjee J, Kumar A, Chinnusamy V, Das B, Mukhopadhyay A, Rajashekara H., & Gakhar S. 2023. Spectral characterization and severity assessment of rice blast disease using univariate and multivariate models. Frontiers in Plant Science 14. DOI: 10.3389/fpls.2023.1067189.
Marwan H., Nusifera S, & Mulyati, S. 2021. Potency of Endophytic Bacteria as Biological Agent to Control Blast Disease on Rice. Jurnal Ilmu Pertanian Indonesia, 26(3): 328–333. DOI: 10.18343/jipi.26.3.328.
Namrata, Singh RP, Verma R, Bisen P, Singh P, & Teli B. 2019. Inheritance of blast disease resistance in the cross hur 3022 x tetep of rice (Oryza sativa l.). Journal of Experimental Biology and Agricultural Sciences 7(6): 529–535. DOI: 10.18006/2019.7(6).529.535.
Ngalimat MS, Hata EM, Zulperi D, Ismail S., Ismail MR, Zainudin NAIM, Saidi NB, & Yusof MT. 2021. Plant growth-promoting bacteria as an emerging tool to manage bacterial rice pathogens. Microorganisms MDPI 9(4). DOI: 10.3390/microorganisms9040682.
Nurcahyanti SD, Wahyuni WS, Masnilah R, & Nurdika AAH. 2021. Diversity of Bacillus spp. from soybean phyllosphere as potential antagonist agents for Xanthomonas axonopodis pv. glycines causal of pustule disease. Biodiversitas Journal of Biological Diversity 22(11): 5003–5011. DOI: 10.13057/biodiv/d221136.
Nurcahyanti SD, Wahyuni WS, Masnilah R, & Nurdika AAH. 2023. Phenol Content and Peroxidase Enzyme Activity in Soybean Infected with Xanthomonas axonopodis pv glycines with the Application of Bacillus subtilis JB12 and Bacillus velezensis ST32. Baghdad Science Journal 20, 1882–1891. DOI: 10.21123/bsj.2023.7406.
Parida I, Damayanti TA, & Giyanto G. 2017. Isolation, Selection, and Identification of Endophytic Bacteria as Rice Resistance Inducer to Bacterial Leaf Blight, 12(6): 199-208. DOI: 10.14692/jfi.12.6.199.
Phibunwatthanawong T, & Riddech N. 2019. Liquid organic fertilizer production for growing vegetables under hydroponic condition. International Journal of Recycling of Organic Waste in Agriculture 8(4):369–380. DOI: 10.1007/s40093-019-0257-7.
Prabawati A, Susilowati A, & Sugiyarto. 2019. Phyllosphere bacteria as a candidate of biocontrol agents against Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight disease. Pros Sem Nas Masy Biodiv Indon 5:256–262.DOI: 10.13057/psnmbi/m050219.
Pszczó?kowski P, Sawicka B, Barba? P, Skiba D, & Krochmal-Marczak B. 2023. The Use of Effective Microorganisms as a Sustainable Alternative to Improve the Quality of Potatoes in Food Processing. Applied Sciences (Switzerland) 13(12). DOI: 10.3390/app13127062.
Putri ND, Aini LQ, Muhibuddin A, & Trianti I. 2022. Screening of endophytic fungi as potential antagonistic agents of Pyricularia oryzae and evaluation of their ability in producing hydrolytic enzymes. Biodiversitas 23(2): 1048–1057. DOI: 10.13057/biodiv/d230248.
Raden I, Fathillah SS, Fadli M, & Suyadi S. 2017. Nutrient content of Liquid Organic Fertilizer (LOF) by various bioactivator and soaking time. Nusantara Bioscience 9(2): 209–213. DOI: 10.13057/nusbiosci/n090217.
Resti Z, Liswarni Y, & Martinius M. 2020. Endophytic Bacterial Consortia as Biological Control of Bacterial Leaf Blight and Plant Growth Promoter of Rice (Oryza sativa L.). Journal of Applied Agricultural Science and Technology 4(2): 134–145. DOI:10.32530/jaast.v4i2.146.
Sharma P, Baidya S, Kandel S, Chaudhary S, & Magar PB. 2022. Management of bacterial leaf blight disease of rice in farmer’s field condition at Bhaktapur district of Nepal. Journal of Agriculture and Natural Resources 5(1): 105–112. https://doi.org/10.3126/janr.v5i1.50646.
Siddika M, Mian M, Hoque T, Hanif M, & Ray P. 2016. Effect of Different Micronutrients on Growth and Yield of Rice. International Journal of Plant & Soil Science 12(6): 1–8. DOI: 10.9734/ijpss/2016/28707.
Tsaniya AR, Dewi EN, & Anggo AD. 2021. Characteristics of liquid organic fertilizer from different composition types of seaweed between Gracilaria sp. And Sargassum sp. Journal of Physics: Conference Series 1943(1). DOI: 10.1088/1742-6596/1943/1/012071.
Tsotetsi T, Nephali L, Malebe M, & Tugizimana F. 2022. Bacillus for Plant Growth Promotion and Stress Resilience: What Have We Learned?. Plants MDPI 11(19). DOI: 10.3390/plants11192482.
Widjayanti T, Kusuma RR, Aini LQ, Fitriani CDA, Sektiono AW, Hadi MS, & Setiawan Y. 2023. Screening of phyllospheric and endophytic bacteria as biocontrol agents of Xanthomonas oryzae pv. oryzae. Biodiversitas 24(4): 2072–2079. DOI: 10.13057/biodiv/d240417.
Win KT, Win AZO, Ohkama-Ohtsu N, & Yokoyama T. 2018. Bacillus Pumilus Strain TUAT-1 and Nitrogen Application in nursery phase promote growth of rice plants under field conditions. Agronomy 8(10). DOI: 10.3390/agronomy8100216.
Yang F, Zhang J, Zhang H, Ji G, Zeng L, Li Y, Yu C, Fernando, WGD, & Chen W. 2020. Bacterial Blight Induced Shifts in Endophytic Microbiome of Rice Leaves and the Enrichment of Specific Bacterial Strains With Pathogen Antagonism. Frontiers in Plant Science 11. DOI: 10.3389/fpls.2020.00963
Yang R, Li S, Li Y, Yan Y, Fang Y, Zou L, & Chen G. 2021. Bactericidal Effect of Pseudomonas oryziphila sp. nov., a Novel Pseudomonas Species Against Xanthomonas oryzae Reduces Disease Severity of Bacterial Leaf Streak of Rice. Frontiers in Microbiology 12. DOI: 10.3389/fmicb.2021.759536.
Yao X, Guo H, Zhang K, Zhao M, Ruan J, & Chen J. 2023. Trichoderma and its role in biological control of plant fungal and nematode disease. In Frontiers in Microbiology 14. DOI: 10.3389/fmicb.2023.1160551.
Yasmin S, Hafeez FY, Mirza MS, Rasul M, Arshad HMI, Zubair M, & Iqbal M. 2017. Biocontrol of Bacterial Leaf Blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3. Frontiers in Microbiology, 8(SEP). DOI: 10.3389/fmicb.2017.01895.
Yusnaini Y, Nur I, & Baheri B. 2022. The Nutrient Content in Liquid Organic Fertilizer (Bio-slurry) and Its Effect on Plankton Abundance and Total Bacteria in Traditional Pond. Advances in Biological Sciences Research 20:461-466.