Methyl jasmonate stimulates growth and upregulates the expression of Phenylalanine Ammonia-Lyase (PAL) gene in Gynura pseudochina in vitro micropropagation

##plugins.themes.bootstrap3.article.main##

TITAH RIGEL ANJALANI
SALMA ARGYA RASMI
ANISA ESTI RAHAYU
MUHAMMAD RIFQI NUR RAMADHANI
MAY FIATUS SHOLIHAH
IRA PUSPANINGTYAS
IRO DATUS SOLEHA
SEPTI ANITA SARI
MAULIDIA RAHMAWATI
NASORI NASORI
NURUL JADID
https://orcid.org/0000-0001-9387-4919

Abstract

Abstract. Anjalani TR, Rasmi SA, Rahayu AE, Ramadhani MRN, Sholihah MF, Puspaningtyas I, Soleha ID, Sari SA, Rahmawati M, Nasori N, Jadid N. 2024. Methyl jasmonate stimulates growth and upregulates the expression of Phenylalanine Ammonia-Lyase (PAL) gene in Gynura pseudochina in vitro micropropagation. Biodiversitas 25: 1955-1964. The use of medicinal plants as primary resources for traditional medicine is rising. Gynura pseudochina (L) DC. is a well-recognized traditional medicinal plant from Southeast Asia. It is rich in bioactive compounds like flavonoids, alkaloids, saponins, and tannins. Various techniques and methods have been developed to ensure plant quality and enhance phytomedicines' production, one of which involves plant in vitro culture. Elicitor-based in vitro culture, particularly using Methyl Jasmonate (MeJA), has been shown to boost the production of secondary metabolites in plants through the overexpression of Phenylalanine Ammonia-Lyase (PAL) genes, known to play a role in the excessive production of flavonoid compounds. This research aims to investigate the impact of MeJA on the growth and PAL gene expression in G. pseudochina in vitro culture. Several MeJA concentrations of MeJA (0, 75, 150, and 300 µM) were tested. Our findings revealed that the application of MeJA to G. pseudochina in vitro had a noticeable impact on callogenesis and organogenesis. The optimal condition for callogenesis was achieved with MeJA at a concentration of 150 µM. On the other hand, the highest frequency of root induction was observed at 75 µM of MeJA treatment, while the highest shoot frequency occurred at 150 µM of MeJA. Interestingly, the plant height, fresh weight, leaf, and shoot numbers were significantly affected after treatment with 150 µM of MeJA. Additionally, 75 µM of MeJA was found to promote optimal root growth compared to other MeJA treatments. Finally, 150 µM of MeJA treatment resulted in higher expression of the PAL gene (1.29 folds) than the non-treated plants. Our findings suggested that MeJA influenced the G. pseudochina growth and potentially increased the production of flavonoid compounds in vitro.

##plugins.themes.bootstrap3.article.details##

References
Abbasi BH, Zahir A, Ahmad W, Nadeem M, GiglioliGuivarc’h N, Hano C. 2019. Biogenic zinc oxide nanoparticles-enhanced biosynthesis of lignans and neolignans in cell suspension cultures of Linum usitatissimum L. Artif. Cells Nanomed. Biotechnol., 47(1):1367-1373. https://doi.org/10.1080/21691401.2019.1596942.
Malik, N. A., Kumar, I. S., & Nadarajah, K. 2020. Elicitor and receptor molecules: orchestrators of plant defense and immunity. Int. J Mol Sci., 21(3), 963. https://doi.org/10.3390%2Fijms21030963.
Alam, P., & Albalawi, T. H. (2020). In vitro alteration of artemisinin biosynthesis in Artemisia annual during treatment with methyl jasmonate. Trop. J Pharm. Res., 19(1), 33-37. http://dx.doi.org/10.4314/tjpr.v19i1.5.
Amoanimaa-Dede, H., Su, C., Yeboah, A., Zhou, H., Zheng, D., Zhu, H. 2022. Growth Regulators Promote Soybean Productivity: A Review PeerJ, 10, e12556. https://doi.org/10.7717/peerj.12556.
Avalbaev A, Yuldashev R, Fedorova K, Somov K, Vysotskaya L, Allagulova C, Shakirova F. 2016. Exogenous methyl jasmonate regulates cytokinin content by modulating cytokinin oxidase activity in wheat seedlings under salinity. J. Plant Physiol. 191:101–110. https://doi.org/10.1016/j.jplph.
11.013.
Bisht, A., Singh, L., Pandey, A., Pandey, V., Dasila, K., Bhatt, I. D., Pande, V. 2023. Elicitor-induced phytochemicals production in Berberis lycium Royle. Ind. Crops and Prod., 199, 116735. https://doi.org/10.1016/j.indcrop.2023.116735.
Chavan, J. J., Kshirsagar, P. R., Jadhav, S. G., Nalavade, V. M., Gurme, S. T., Pai, S. R. 2021. Elicitor-mediated enhancement of biomass, polyphenols, mangiferin production and antioxidant activities in callus cultures of Salacia chinensis L. Biotech, 11(6), 285. https://doi.org/10.1007/s13205-021-02836-2.
Dale, J. E. 1988. The control of leaf expansion. Annu. Rev. Plant Physiol. Plant Mol. Biol., 39(1), 267-295. https://doi.org/10.1146/annurev.pp.39.060188.001411.
Delgado, C., Mora-Poblete, F., Ahmar, S., Chen, J. T., Figueroa, C. R. 2021. Jasmonates and Plant Salt Stress: Molecular Players, Physiological Effects, and Improving Tolerance By Using Genome-Associated Tools. Int. JMol. Sci., 22(6), 3082. https://doi.org/10.3390/ijms22063082.
El-Sayed, S. M., Mohamed, A. S., & Abd Elhafez, A. E. 2023. Prospective Effects of Methyl Jasmonate to Ameliorate Celosia argentea L. Growth Under Low Light Conditions. Middle East J Appl. Sci., 13(2). https://doi.org/10.0. 143.24/mejas/2023.13.2.18.
Feng, L., Wei, L., Liu, Y., Hu, D., Gong, W., Liao, W. 2023. Hydrogen peroxide is involved in methyl jasmonate-induced adventitious rooting in cucumber under cadmium stress. Sci Hortic, 309, 111666. https://doi.org/10.1016/j.scienta.2022.111666.
Furmanowa, M., Glowniak, K., Syklowska-Baranek, K., Zgórka, G., Józefczyk, A. 1997. Effect of picloram and methyl jasmonate on growth and taxane accumulation in callus culture of Taxus media var. Hatfieldii. Plant Cell, Tissue Organ Cult., 49, 75-79. https://doi.org/10.1023/A:1005858329430.
Ghulamahdi, M. I., Aziz, S. A., & Nirwan, N. 2008. Effect of light on the growth quantity and content of anthocyanin of Daun Dewa (Gynura pseudochina (L.) DC) In Vitro. Indones. J. Agron., 36(1), 8033.
Heinrich, M., Hettenhausen, C., Theo, L., Hendrik, W., Jingjing, F., Baldwin, I. T. 2013. High levels of jasmonic acid antagonize the biosynthesis of gibberellins and inhibit the growth of Nicotiana attenuata stems. Plant J Cell Mol Biol 73(4):591–606. https://doi.org/10.1111/tpj.12058.
Ho T. T, Murthy H. N, Park S. Y. 2020. Methyl Jasmonate induced oxidative stress and accumulation of secondary metabolites in plant cell and organ cultures. Int. J Mol Sci., 21(3):716. https://doi.org/10.3390%2Fijms21030716.
Huang, T., Liu, D., Cui, X., Li, M., Jin, L., Paré, P. W., et al. 2023. In vitro bioactive metabolite production and plant regeneration of medicinal plant Angelica sinensis. Ind. Crops Prod., 194, https://doi.org/10.1016/j.indcrop.2023.116276.
Islam, M. M., Islam, S., Parvin, S., & Haque, M. A. 2019. Mitigation of Salt Stress by Foliar Application of Jasmonic Acid in Wheat. Am. J Plant Biol., 4(1), 18-34.
Jadid, N., Anggraeni, S., Ramadani, M.R.N., Arieny, M., Mas’ud, F. 2024. In vitro propagation of Indonesian stevia (Stevia rebaudiana) genotype using axenic nodal segments. BMC Res. Notes. 17(45). https://doi.org/10.1186/s13104-024-06703-0.
Jadid, N., Arraniry, B. A., Hidayati, D., Purwani, K. I., Wikanta, W., Hartanti, S. R., Rachman, R. Y. 2018. Proximate composition, nutritional values and phytochemical screening of Piper retrofractu vahl. fruits. Asian Pac J Trop. Biomed, 8(1), https://doi.org/10.4103/2221-1691.221136.
Jadid, N., Mardika, R. K., Nurhidayati, T., & Irawan, M. I. 2016. Reverse transcription-PCR analysis of geranylgeranyl diphosphate synthase (JcGGPPS) in Jatropha curcas L. and in silico analysis of Casbene Synthase (JcCS) among Euphorbiaceae. AIP Conf. Proc., 1744, (1). 020042. https://doi.org/10.1063/1.4953516.
Jadid, N., Maziyah, R., Nurcahyani, D.D., Mubarokah, N.R. 2017. Growth and physiological responses of some capsicum frutescens varieties to copper stress. AIP Conf. Proc, 1854, 020018. https://doi.org/10.1063/1.4985409.
Jang, G., Chang, S.H., Um, T.Y., Lee, S., Kim, J. K,. Choi, Y.D. 2017. Antagonistic interaction between jasmonic acid and cytokinin in xylem development. Sci Rep. 7:10212. https://doi.org/10.1038/s41598-017-10634-1.
Jang, G., Yoon, Y., & Choi, Y. D. 2020. Crosstalk With Jasmonic Acid Integrates Multiple Responses in Plant Development. Int. J Mol. Sci., 21(1), 305. https://doi.org/10.3390%2Fijms21010305.
Jásik, J., de Klerk, G. J. 2006. Effect of methyl jasmonate on morphology and dormancy development in lily bulblets regenerated in vitro. J Plant Growth Regul., 25(1), 45-51. https://doi.org/10.1007/s00344-005-0048-4.
Jeyasri, R., Muthuramalingam, P., Karthick, K., Shin, H., Choi, S. H., & Ramesh, M. 2023. Methyl jasmonate and salicylic acid as powerful elicitors for enhancing the production of secondary metabolites in medicinal plants: an updated review. Plant Cell Tissue Organ Cult., 153(3), 447-458. https://doi.org/10.1007/s11240-023-02485-8.
Jin, M., Liu, Y., Shi, B., Yuan, H. 2023. Exogenous IAA improves the seedling growth of Syringa villosa via regulating the endogenous hormones and enhancing the photosynthesis. Sci. Hortic., 308, 111585. https://doi.org/10.1016/j.scienta.2022.111585.
Kami?ska, M. 2021. Role and activity of jasmonates in plants under in vitro conditions. Plant Cell Tissue Organ Cult., 146(3), 425-447. https://doi.org/10.1007/s11240-021-02091-6.
Kianersi, F., Abdollahi, M. R., Mirzaie-Asl, A., Dastan, D., & Rasheed, F. 2020. Identification and tissue-specific expression of rutin biosynthetic pathway genes in Capparis spinosa elicited with salicylic acid and methyl jasmonate. Sci. Rep., 10(1), 8884. https://doi.org/10.1038/s41598-020-65815-2.
Krishnan, M. L., Roy, A., Bharadvaja, N. 2019. Elicitation effect on the production of asiaticoside asiatic acid in shoot, callus, and cell suspension culture of Centella asiatica. J App Pharm Sci 9:67–74. https://doi.org/10.7324/JAPS.2019.90609.
Krzyzanowska, J., Czubacka, A., Pecio, L., Przybys, M., Doroszewska, T., Stochmal, A. 2012. The effects of jasmonic acid and methyl jasmonate on rosmarinic acid production in Mentha × piperita cell suspension cultures. Plant Cell Tissue Organ Cult 108:73–81. https://doi.org/10.1007/s11240-011-0014-8.
Lahuta, L. B., Zalewski, K., G?owacka, K., Nitkiewicz, B., & Amarowicz, R. 2017. Effect of methyl jasmonate on carbohydrate composition, ?-amylase activity and growth of triticale (Triticosecale witmmack) seedlings. J Agric. Sci. Technol.,19(5), 1008-0864.
Lalnunzawma., Karuna, K., Rani, R., Nahakpam, S., Bahera, S. K., Sahay, S. 2020. Effect of Methyl Jasmonate on Growth and Flowering Behavior of Strawberry cv. Nabila. Int. J. Curr. Microbiol. App. Sci, 9(9),2690-2695. https://doi.org/10.20546/ijcmas.2020.909.335.
Larrieu, A., & Vernoux, T. 2016. Q&A: How does jasmonate signaling enable plants to adaptand survive. BMC Biol., 14, 1-8. https://doi.org/10.1186/s12915-016-0308-8.
Lemmen R, Bunyapraphatsara N. Plant resources of south-east Asia, Medicinal and Poisonous Plants 3. Backhuys Publishers, Leiden, The Netherlands. 2003.
Li, C., Wang, P., Menzies, N. W., Lombi, E., & Kopittke, P. M. 2018. Effects of methyl jasmonate on plant growth and leaf properties. J. Plant Nutr and Soil Sci., 181(3), 409-418. https://doi.org/10.1002/jpln.201700373.
Liu, R., Wang, Z., Zheng, J., Xu, Z., Tang, X., Huang, Z., Li, T. 2022. The effects of methyl on growth, gene expression and metabolite accumulation in Isatis indigotica Fort. Ind. Crops Prod., 177:114482. https://doi.org/10.1016/j.indcrop.2021.114482.
Luo, Y., Zheng, K., Liu, X., Tao, J., Sun, X., Deng, Y., Deng, X. 2023. In Vitro Propagation and Genetic Uniformity Assessment of Manglietiastrum sinicum: A Critically Endangered Magnoliaceae Species. Plants, 12(13), 2500. https://doi.org/10.3390/plants12132500.
Lopez, G., Ahmadi, S. H., Amelung, W., Athmann, M., Ewert, F., Gaiser, T., et al. 2023. Nutrient deficiency effects on root architecture and root-to-shoot ratio in arable crops. Front. Plant Sci., 13, 5385. https://doi.org/10.3389/fpls.2022.1067498.
Mahmood, M., Bidabadi, S. S., Ghobadi, C., & Gray, D. J. 2012. Effect of Methyl Jasmonate Treatments On Alleviation of Polyethylene Glycol-Mediated Water Stress In Banana (Musa acuminata cv.‘Berangan’, AAA) Shoot Tip Cultures. Plant Growth Regul., 68, 161-169. https://doi.org/10.1007/s10725-012-9702-6.
Machado, R.A.R., Baldwin, I.T, Erb, M. 2017. Herbivory-induced jasmonates constrain plant sugar accumulation and growth by antagonizing gibberellin signaling and not by promoting secondary metabolite production. New Phytol 215:803–812. https://doi.org/10.1111/nph.14597.
Mangas, S., Bonill, M., Osuna, L., Moyano, E., Tortoriello, J., Cusido, R. M., Piñol, T., Palazón, J. 2006. The efect of methyl jasmonate on triterpene and sterol metabolisms of Centella asiatica, Ruscus aculeatus and Galphimia glauca cultured plants. Phytochem. 67:2041–2049. https://doi.org/10.1016/j.phytochem.2006.06.025.
Mehmandar, M. N., Rasouli, F., Giglou, M. T., Zahedi, S. M., Hassanpouraghdam, M. B., Aazami, M. A., et al. 2023. Polyethylene glycol and sorbitol-mediated in vitro screening for drought stress as an efficient and rapid tool to reach the tolerant Cucumis melo L. genotypes. Plants, 12(4), 870. https://doi.org/10.3390/plants12040870.
Meng, X., Li, J., Li, M., Wang, H., Ren, B., Chen, J., Li, W. 2021. Traditional uses, phytochemistry, pharmacology and toxicology of the genus Gynura (Compositae): a comprehensive review. J. Ethnopharmacol., 276, 114145. https://doi.org/10.1016/j.jep.2021.114145.
Moektiwardoyo, W. M., Tjitraresmi, A., Susilawati, Y., Iskandar, Y., Halimah, E., Zahryanti, D. 2014. The potential of dewa leaves (Gynura pseudochina (L) DC) and temu ireng rhizomes (Curcuma aeruginosa Roxb.) as medicinal herbs for dengue fever treatment. Procedia Chem., 13, 134-141. https://doi.org/10.1016/j.proche.2014.12.017.
Nirwan, N., Aziz, S. A. 2006. Multiplications and Anthocyanins Pigmentation of Gynura pseudochina (L.) DC In Vitro. Indones. J. Agron., 34(2), 7930. https://doi.org/10.24831/jai.v34i2.1289.
Noir, S., Bömer, M., Takahashi, N., Ishida, T., Tsui, T. L., Balbi, V., et al. 2013. Jasmonate controls leaf growth by repressing cell proliferation and the onset of endoreduplication while maintaining a potential stand-by mode. Plant Physiol., 161(4), 1930-1951. https://doi.org/10.1104/pp.113.214908.
Pantin, F., Simonneau, T., Rolland, G., Dauzat, M., Muller, B. 2011. Control of leaf expansion: a developmental switch from metabolic to hydraulics. Plant Physiol. 156(2), 803-815. https://doi.org/10.1104/pp.111.176289.
Patil, R. A., Lenka, S. K., Normanly, J., Walker, E. L., & Roberts, S. C. 2014. Methyl Jasmonate Represses Growth and Affects Cell Cycle Progression in Cultured Taxus Cells. Plant Cell Rep., 33, 1479-1492. https://doi.org/10.1007/s00299-014-1632-5.
Picking, D. 2024. The global regulatory framework for medicinal plants. In Pharmacognosy (pp. 769-782). Academic Press.
Pisitpaibool S, Sukrong S, Kanjanaprapakul K, Phisalaphong M. 2021. Effects of preharvest methyl jasmonate elicitation and electrical stimulation on camptothecin production by in vitro plants Ophiorrhiza ridleyana Craib. Appl. Sci., 11(10):4555. https://doi.org/10.3390/app11104555.
Qin, R., Zhao, Q., Gu, C., Wang, C., Zhang, L., Zhang, H. 2023. Analysis of oxidase activity and transcriptomic changes related to cutting propagation of hybrid larch. Sci Rep 13, 1354 2023). https://doi.org/10.1038/s41598-023-27779-x.
Rakesh, B., Srinatha, N., KJ, R. K., Madhu, A., MR, S. K., Praveen, N. 2022. Antibacterial activity and spectroscopic characteristics of silver nanoparticles synthesized via plant and in vitro leaf-derived callus extracts of Mucuna pruriens (L.) DC. S. Afr. J Bot., 148, 251-258. https://doi.org/10.1016/j.sajb.2022.04.047.
Rasouli, D., Werbrouck, S., Maleki, B., Jafary, H., & Schurdi-Levraud, V. 2021. Elicitor-induced in vitro shoot multiplication and steviol glycosides production in Stevia rebaudiana. S Afr. J Bot., 137, 265-271. https://doi.org/10.1016/j.sajb.2020.10.023.
Restiani, R., & Barlin, N. Dwi Aditiyarini. 2022. Effect of methyl jasmonate on biomass and saponin content in javanese ginseng (Talinum paniculatum (Jacq.) Gaertn.). Sch Acad J Biosci, 10 (7), 154-158. http://dx.doi.org/10.36347/sajb.2022.v10i07.003.
Rodríguez-Sánchez, L. K., Pérez-Bernal, J. E., Santamaría-Torres, M. A., Marquínez-Casas, X., Cuca-Suárez, L. E., Prieto-Rodríguez, J. A., & Patiño-Ladino, O. J. 2020. Effect of methyl jasmonate and salicylic acid on the production of metabolites in cell suspensions cultures of Piper cumanense (Piperaceae). Biotechnol Reports 28: e00559. https://doi.org/10.1016/j.btre.2020.e00559.
Saralamp P, Chuakul W, Prathanturarug S. Medicinal plants in Thailand. Vol. I: Sirirukhachart Botanical Garden. 3rd ed., Amarin Printing & Publishing, Mahidol University, Bangkok, Thailand. 2000.
Sari, Y. P., Kusumawati, E., Saleh, C., Kustiawan, W., Sukartingsih, S. 2018. Effect of sucrose and plant growth regulators on callogenesis and preliminary secondary metabolic of different explant Myrmecodia tuberosa. Nusantara Biosci., 10(3), 183-192. https://doi.org/10.13057/nusbiosci/n100309.
Sathyanarayan, S. R., Warke, V. G., Mahajan, G. B., & Annapure, U. S. 2023. Soil free nutrient availability to plants. J Plant Nutr,, 46(5), 801-814. https://doi.org/10.1080/01904167.2022.2071736.
Sirhindi, G., Mushtaq, R., Gill, S. S., Sharma, P., Abd_Allah, E. F., Ahmad, P. 2020. Jasmonic Acid and Methyl Jasmonate Modulate Growth, Photosynthetic Activity and Expression of Photosystem II Subunit Genes in Brassica oleracea L. Sci. Rep., 10(1), 9322. https://doi.org/10.1038/s41598-020-65309-1.
Siriwatanametanon, N., Heinrich, M. 2011. The Thai medicinal plant Gynura pseudochina var. hispida: Chemical composition and in vitro NF-?B inhibitory activity. Nat. Prod. Commun, 6(5). https://doi.org/10.1177/1934578X1100600512.
Sun, J., Wang, Y., Chen, X., Gong, X., Wang, N., Ma, L., et al. 2017. Effects of methyl jasmonate abscisic acid on anthocyanin biosynthesis in callus cultures of red-fleshed apple (Malus sieversii f. niedzwetzkyana). Plant Cell Tiss Organ Cult., 130, 227–237. https://doi.org/10.1007/s11240-017-1217-4.
Talukdar, M., Swain, D. K., Bhadoria, P. B. S. 2022. Effect of IAA and BAP application in varying concentration on seed yield and oil quality of Guizotia abyssinica (Lf) Cass. Ann. Agric., 67(1), 15-23. https://doi.org/10.1016/j.aoas.2022.02.002.
Wu, K., Xiong, Y., Wu, Y., da Silva, J. A. T., Zeng, S., & Ma, G. 2023. Shoot proliferation and de novo shoot organogenesis induction in Pandanus tectorius Sol.—new insights for in vitro plant regeneration. In Vitro Cell. Dev. Biol. Plant, 1-11. https://doi.org/10.1007/s11627-023-10338-4.
Woch, N., Laha, S., Gudipalli, P. 2023. Salicylic acid and jasmonic acid induced enhanced production of total phenolics, flavonoids, and antioxidant metabolism in callus cultures of Givotia moluccana (L.) Sreem. In Vitro Cell. Dev. Biol.-Plant, 1-22. https://doi.org/10.1007/s11627-023-10335-7.
Yang, L., Li, W. C., Fu, F. L., Qu, J., Sun, F., Yu, H., Zhang, J. 2022. Characterization of phenylalanine ammonia-lyase genes facilitating flavonoid biosynthesis from two species of medicinal plant Anoectochilus. PeerJ, 10, e13614. http://dx.doi.org/10.7717/peerj.13614.
Yamashita, F., Rodrigues, A.L., Rodrigues, T.M., Palermo, F.H., Baluška, F., and de Almeida, L.F.R. 2021. Potential Plant–Plant Communication Induced by Infochemical Methyl Jasmonate in Sorghum (Sorghum bicolor). Plants. 10. 485. https://doi.org/10.3390/plants10030485.
Zhou, Y., Ju, Y., Chi, X., Shen, P., Zhang, Y., Cai, M., et al. 2023. Three CYCDs positively regulate plant height of crape myrtle by increasing cell division. Sci. Hortic., 315, 111954. https://doi.org/10.1016/j.scienta.2023.111954.