Genetic diversity and population structure of Philippine strawberry germplasm based on genome-wide simple sequence repeat markers

##plugins.themes.bootstrap3.article.main##

VENUS H. ELEC
CHARLES ANTHON E. CADORNA
BELINDA A. TAD-AWAN
DARWIN A. BASQUIAL
MILAGROS R. DUMASLAN
JESSICA D. REY

Abstract

Abstract. Elec VH, Cadorna CAE, Tad-Awan BA, Basquial DA, Dumaslan MR, Rey JD. 2024. Genetic diversity and population structure of Philippine strawberry germplasm based on genome-wide simple sequence repeat markers. Biodiversitas 25: 2969-2979. Strawberry is a globally recognized fruit due to its health benefits and economic significance. Determining the level of genetic diversity and the relationship between germplasm resources involved in the breeding program is critical for effective crop improvement strategies. This study used 197 Simple Sequence Repeat (SSR) markers to assess the genetic diversity and population structure of 24 strawberry  germplasm  from  the Benguet State University (BSU) collection. In this study, 70% of the markers used were polymorphic with reproducible fragments. A total of 792 alleles were detected, with an average of six per marker. The diversity indices indicated an intermediate level of diversity among the germplasm based on the Jaccard coefficient. Results from cluster analysis generated three groups, separating the Red Milky Way and Summer Princess cultivars from the rest of the germplasm evaluated, while a third cluster was further divided into six subgroups. Furthermore, identified clustering patterns of the evaluated genotypes showed independence from the region of origin, coinciding with Principal Component Analysis (PCA) and population structure analysis results. This study reveals the genetic diversity level and population structure of the strawberry cultivars in the Philippines using SSR markers, facilitating accurate identification and informed parental selection for breeding objectives.

##plugins.themes.bootstrap3.article.details##

References
Almorado RC. 2019. Adaptability of strawberry (Fragaria ananassa Duch) in Lanao Del Sur, Philippines. IJHSS 11(3):25–32. DOI:10.26803/ijhss.11.3.4.
Aristya GA, Kasiamdari RS, Setyoningrum R, Larasati B. 2019. Genetic variations of strawberry cultivars of Fragaria × ananassa and
Fragaria vesca based on RAPD. Biodiversitas 20(3): 770-775. DOI: https://doi.org/10.13057/biodiv/d200322
Bhowal RR, Hossain MM, Kayesh E, Hasan M. 2019. Morphological and molecular characterization of tropical strawberry. Plant tissue culture biotech 9(2):267–276. DOI:10.3329/ptcb.v29i2.44515.
Bird KA, Hardigan MA, Ragsdale AP, Knapp SJ, VanBuren R, Edger PP. 2021. Diversification, spread, and admixture of octoploid strawberry in the western hemisphere. Am J Bot 108(11): 2269-2281. DOI:10.1002/ajb2.1776.
Biswas A. 2018. Characterization of strawberry (Fragaria ananassa) by genotyping and phenotyping. [Dissertation]. Delaware State University?ProQuest Dissertations Publishing.
Camargo LKP, Pilati L, Zchonski FL, De Resende JTV, Da-Silva PR. 2022. Genetic diversity of Brazilian farmers-made strawberry genotypes and their relationship with commercial cultivars. Genet Resour Crop Evol. 69(5): 1879-1888. DOI:10.1007/s10722-022-01350-5,
Caro RES, Cagayan J, Gardoce RR, Manohar ANC, Canama-Salinas AO, Rivera RL, Lantican DV, Galvez HF, Reaño CE. 2022. Mining and validation of novel simple sequence repeat (SSR) markers derived from coconut (Cocos nucifera L.) genome assembly.
J Genet Eng Biotechnol. 20: 1-14. . DOI:10.1186/s43141-022-00354-z.
Clark LV, Jasieniuk M. 2011. POLYSAT: An R package for polyploid microsatellite analysis. Mol Ecol Resour 11: 562-566. DOI: 10.1111/j.1755-0998.2011.02985.x.
Chen J, Zheng Y, Guo W, Yang Z, Zhuang Z, Zhu B. 2018.Identification of major and introduced strawberry cultivars in Fujian using SSR molecular markers. Fujian J. Agric. Sci. 33(2), 150-153. DOI: full/10.5555/20193110245
Clark LV, Schreier AD. 2017. Resolving microsatellite genotype ambiguity in populations of allopolyploid and diploidized autopolyploid organisms using negative correlations between allelic variables. Mol Ecol Resour 17(5): 1090-1103. DOI: 10.1111/1755-0998.12639.
Cockerton HM, Karlström A, Johnson AW, Li B, Stavridou E, Hopson KJ, Whitehouse AB, Harrison RJ. 2021. Genomic informed breeding strategies for strawberry yield and fruit quality traits. Front Plant Sci Oct 5(12): 2101. DOI: 10.3389/fpls.2021.724847.
Delgado H, Martín JP. 2023. Genetic diversity of black amaranth (Amaranthus quitensis Kunth) landraces of Ecuadorian highlands: association genotypes—color morphotypes. Agriculture (Switzerland) 13(1),34. DOI:10.3390/agriculture13010034.
Jyoti DE, Dubey RK, Sagar V, Verma RK, Singh PM, Behera TK. Vegetable peas (Pisum sativum L.) diversity: An analysis of available elite germplasm resources with relevance to crop improvement. 2023. Spanish J. Agric. Res.21(2), pp.e0701-e0701. DOI: https://doi.org/10.5424/sjar/2023212-19457
Edger PP, McKain MR, Yocca AE, Knapp SJ, Qiao Q, Zhang T. 2020. Reply to: Revisiting the origin of octoploid strawberry. Nat Genet 52(1): 5-7. DOI:10.1038/s41588-019-0544-2.
Earl DA, von Holdt BM. 2012. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genet Resour 4: 359-361. DOI: https:/doi.org/10.1007/s12686-011-9548-7.
Elec VH, Cadorna CAE, Rey JD. 2023. In silico mining and validation of simple sequence repeat (SSR) markers derived from the Fragaria x ananassa genome assembly. SABRAO J Breed Genet 55(5): 1573-1586. DOI: http://doi.org/10.54910/sabrao2023.55.5.11.
Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol Ecol 14(8): 2611-20. DOI: 10.1111/j.1365-294X.2005.02553.x. PMID: 15969739.
FAOSTAT. 2023. UN food and agricultural organization statistical databases. https://www.fao.org/faostat/en/#data/QV.
Fan Z, Whitaker VM. 2023.Genomic signatures of strawberry domestication and diversification. The Plant Cell. 2023. koad314 DOI:10.1093/plcell/koad314.
Gaudet J. 2005. HIERFSTAT, a package for R to compute and test hierarchial F-statistics. Mol Ecol Notes 5:184-6. DOI:10.1111/j.1471-8286.2004.00828.x
Guo R, Xue L, Luo G, Zhang T, Lei J.2018. Investigation and taxonomy of wild Fragaria resources in Tibet, China. Genet Resour Crop Evol 65, 405–415.DOI: https://doi.org/10.1007/s10722-017-0541-1
Hammer O, Harper DAT, Ryan PD. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeont Electr 4: 9. DOI: http://palaeo-electronica.org/2001_1/past/issue1_01.htm.
Hardigan MA, Feldmann MJ, Pincot DDA, Famula RA, Vachev M V, Madera MA, Zerbe P, Mars K, Peluso P, Rank D. 2021. Blueprint for phasing and assembling the genomes of heterozygous polyploids: Application to the octoploid genome of strawberry. BioRxiv. DOI: https://doi.org/10.1101/2021.11.03.467115.
Hilmarsson HS, Hytönen T, Isobe S, Göransson M, Toivainen T, Hallsson JH. 2017. Population genetic analysis of a global collection of Fragaria vesca using microsatellite markers. PloS one. 12(8)DOI: https://doi.org/10.1371/journal.pone.0183384
Hu Y, Feng C, Yang L, Edger PP, Kang M. 2022. Genomic population structure and local adaptation of the wild strawberry Fragaria nilgerrensis. Hortic Res 9: uhab059. DOI:10.1093/hr/uhab059.
Kaleybar BS, Nematzadeh GA, Ghasemi Y, Hamidreza S, Petroudi H. 2018. Assessment of genetic diversity and fingerprinting of strawberry genotypes using inter simple sequence repeat marker. Horticult Int J 2(5): 264-269. DOI:10.15406/hij.2018.02.00062.
Kamvar ZN, Tabima JF, Grünwald NJ. 2014. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. Peer J 2: e281. https://doi.org/10.7717/peerj.281.
Kim HJ, Lee JN, Cho KS, Won HS, Suh JT. 2019. Genetic diversity and population structure analysis of ever-bearing and june-bearing strawberry cultivars using SSR markers. Hortic Sci 37(1): 108-118.
Kumari S. 2019. Molecular characterization of different strawberry (Fragaria x ananassa Duch.) cultivars growing under mid hill conditions of Himachal Pradesh. Int j agric environ biotechnol 12 (4) 331-337 DOI:10.12972/kjhst.20190010.
Ledesma NA, Matulac JM, Sevilleja JE, Enriquez ML. 2023. Detecting misidentifications of strawberry cultivars in the Philippines using single nucleotide polymorphism markers. J Hortic Sci Biotechnol 98: 4, 495-507. DOI: 10.1080/14620316.2022.2162444.
Lim S, Lee J, Lee HJ, Park KH, Kim DS, Min SR, Jang WS, Kim T Il, Kim HR. 2017. The genetic diversity among strawberry breeding resources based on SSRs. Sci Agric 74(3): 226-234. DOI:10.1590/1678-992X-2016-0046.
Mainem CT, Agustin RQ, Duza GM. 2021. Growth and yield adaptability of selected varieties of strawberry (Fragaria x ananassa) under BPSU Abucay Bataan condition, Philippines. J Bio Env Sci 18(2): 23-30. DOI:http://www.innspub.net
Mezzetti B, Giampieri F, Zhang YT, Zhong CF. 2018. Status of strawberry breeding programs and cultivation systems in Europe and the rest of the world. J Berry Res 8(3): 205-221. DOI:10.3233/JBR-180314.
Nei M.1978. Estimation of average heterozygosity ang genetic distance from a small number of individuals. Genetics 89: 583-90. DOI: https://doi.org/10.1093/genetics/89.3.583
Njuguna W, Liston A, Cronn R, Ashman TL, Bassil N. 2013. Insights into phylogeny, sex function, and age of Fragaria based on whole chloroplast genome sequencing. Mol Phylogenet Evol 66:17-29. https://doi.org/10.1016/j.ympev.2012.08.026.
Padua DP, and Ligat CS.2015. Yield performance of potential strawberry varieties under organic field conditons (Abstract). Proceedings of the 23rd National Fruit ymposium. Philipp J. Crop Sci 40 (Supp.2).p.28
Paradis E. 2011. Pegas: An R package for population genetics with an integrated–modular approach. Bioinformatics 26: 419-420. DOI:10.1093/bioinformatics/btp696.
Pielou EC. 1975. Ecological diversity. Wiley New YorkPincot DDA, Ledda M, Feldmann MJ, Hardigan MA, Poorten TJ, Runcie DE, Heffelfinger C, Dellaporta SL, Cole GS, Knapp SJ. 2021. Social network analysis of the genealogy of strawberry: Retracing the wild roots of heirloom and modern cultivars. G3: Genes, Genomes, Genetics.11(3), jkab015: . doi:10.1093/G3JOURNAL/JKAB015.
Pritchard JK, Stephens M, Rosenberg NA, Donnelly P. 2000. Association mapping in structured populations. Am J Hum Genet 67(1):170-181. DOI: 10.1086/302959.
Porter M, Fan Z, Lee S, Whitaker VM. 2023. Strawberry breeding for improved flavor. Crop Sci 63(4): 1949-1963. Doi:10.1002/csc2.21012.
Qarni A, Muhammad K, Wahab A, Ali A, Khizar C, Ullah I, Kazmi A, Sultana T, Hameed A, Younas M, Rahimi M. 2022. Molecular characterization of wild and cultivated strawberry (Fragaria?×?ananassa) through DNA barcode markers. Genet Res: V2022: 9249561 DOI: 10.1155/2022/9249561.
R Core Team. 2020. R: A Language and Environment for Statistical Computing: R Foundation for Statistical Computing. [Vienna, Austria. https://www.r-project.org/
Salinas NR, Zurn JD, Mathey M et al. 2017. Validation of molecular markers associated with perpetual flowering in octoploid Fragaria germplasm. Mol Breed 37(5): 70. DOI:10.1007/s11032-017-0672-2.
Sharma S, Kaur R, Kumar K, Prasad H. 2021. Genetic variability in strawberry (Fragaria x ananassa Duch.) cultivars assessed by morphological traits and EST-SSR markers of Rubus ellipticus. J Plant Biochem Biotechnol 30: 10. DOI: 10.1007/s13562-020-00567-8.
Simpson EH. 1949. Measurement of Diversity. Nature 163: 188. DOI: https://doi-org.srv-proxy1.10.1038/163688a0
Taylaran RD, Gonzaga Jr AB, Lantud JMM, Silverio BGS. 2023. Runner production of strawberry (Fragaria x ananassa Duch) production under greenhouse and open field conditions in Misamis Oriental, Philippines. IOP Conf Ser: Earth Environ Sci. 3-4 November 2022 Bogor, Indonesia DOI: 012028. 10.1088/1755-1315
Testolin R, Messina R, Cipriani G, De Mori G. 2023. SSR?based DNA fingerprinting of fruit crops. Crop Science, 63(2), 390-459.DOI: https://doi.org/10.1002/csc2.20896
Vieira ML, Santini L, Diniz AL, Munhoz Cde F. 2016.Microsatellite markers: what they mean and why they are so useful. Genet Mol Biol. 39(3):312-28. DOI: 10.1590/1678-4685-GMB-2016-0027.
Wada T, Oku K, Nagano S, Isobe S, Suzuki H, Mori M, Shibato Y. 2017. Development and characterization of a strawberry MAGIC population derived from crosses with six strawberry cultivars. Breed. Sci. 67(4), 370-381.DOI: https://doi.org/10.1270/jsbbs.17009
Whitaker VM, Knapp SJ, Hardigan MA, Edger PP, Slovin JP, Bassil NV, Hytönen T, Mackenzie KK, Lee S, Jung S. 2020. A roadmap for research in octoploid strawberry. Hortic Res 7(1): 33. DOI:10.1038/s41438-020-0252-1.
Xin Y, Fang X, Wang S, Tong J, Lai W, Wang J, Yu H.2019. Comparison of simple sequence repeat (SSR) and sequence related amplified polymorphism (SRAP) markers for genetic diversity analysis in strawberry. J. Zhejiang Univ.Sci. 45(3), 278-287. DOI: 10.3785/j.issn.1008-9209.2018.10.261
Zhang J, Yang J, Lu Y, Zhang X, Xia C, Zhao H, Wen C. 2023. Genetic diversity analysis and variety identification using SSR and SNP markers in melon. BMC Plant Biol 23(1): 39 DOI:10.1186/s12870-023-04056-7.
Zhong Y, Cheng Y, Ruan M, Ye Q, Wang R, Yao Z, Zhou G, Liu J, Yu J, Wan H. 2021. High-throughput SSR marker development and the analysis of genetic diversity in Capsicum frutescens. Horticulturae 7(7): 187 DOI:10.3390/horticulturae7070187.
Zurn JD, Hummer KE, Bassil N V. 2022. Exploring the diversity and genetic structure of the U.S. National Cultivated Strawberry Collection. Hortic Res 9: 1-12]. DOI:10.1093/hr/uhac125.