Detection of microfilaria L3 and insecticide resistance among wild-caught mosquito vectors in endemic areas of lymphatic filariasis

##plugins.themes.bootstrap3.article.main##

ABDUL GHOFUR
SUHARYO HADISAPUTRO
SAYONO SAYONO

Abstract

Abstract. Ghofur A, Hadisaputro S, Sayono S. 2024. Detection of microfilaria L3 and insecticide resistance among wild-caught mosquito vectors in endemic areas of lymphatic filariasis. Biodiversitas 25: 1975-1983. The decline in the global prevalence of Lymphatic Filariasis (LF) is evident in the persistent endemic foci in Africa and Southeast Asia. In this context, the presence of infectious and insecticide-resistant mosquitoes and the annual biting rate in the area are key to microfilaria transmission. Therefore, this research aimed to determine insecticide resistance and microfilariae infection in mosquito vectors in endemic areas. In Jenggot and Medono Villages, twice entomological surveys were conducted based on six LF cases, where indoor and outdoor mosquito capturing was carried out in ten houses within a 100 m radius of each case as well as household interviews about insecticide use. In addition, laboratory works were performed for species identification and detection of ovarian dilatation, microfilariae infection, and knockdown resistance mutations. A total of 1,197 and 581 mosquitoes were distributed to five species and their proportions, namely Culex quinquefasciatus (69.59 and 65.40%), Cx. tritaeniorhynchus (5.76 and 0.00%), Cx. vishnui (5.85 and 27.54%), Anopheles vagus (0.58 and 0.00%), and Aedes aegypti (18.21 and 7.06%). The percentage of female mosquito infection, parity, and microfilaria were 66.25 and 86.00%, 63.37 and 70.95%, as well as 0.00 and 1.34%, respectively. Furthermore, TTA-TTT, TTA-CTA, and TTA-TGT base substitutions were reported in codon 1014 of Cx. quinquefasciatus VGSC gene with proportions of 81.66, 1.67, and 26.67%, respectively. The result showed that the vulnerability of the research location to transmission emphasized the necessity for early detection, vector control, and further analyses of the susceptibility of microfilariae to antiparasitic drugs.

##plugins.themes.bootstrap3.article.details##

References
Aboagye IF, Addison YAA. 2022. The Impact of Mass Drug Administration on Lymphatic Filariasis. J Trop Med. Article ID 7504871. https://doi.org/10.1155/2022/7504871. URL: https://www.hindawi.com/journals/jtm/2022/7504871/
Amini M, Hanafi-Bojd AA, Aghapour AA, Chavshin AR. 2020. Larval habitats and species diversity of mosquitoes (Diptera: Culicidae) in West Azerbaijan Province, Northwestern Iran. BMC Ecol. 20:60. https://doi.org/10.1186/s12898-020-00328-0
Aniaku IE, Onyishi GC, Nwosu CG, Urama CC, Akobe NA, Nnawuihe OO, Obodo CS. 2021. Predisposing Factors to Lymphatic Filariasis among Residents in Igbo-Eze North: An Endemic Area in Nigeria. Iran J Parasitol. 16(4):663-671. doi: 10.18502/ijpa.v16i4.7879. PMID: 35082895; PMCID: PMC8710194.
Anju-Viswan K, Pushpalatha E, Srivastava PK. 2020. Insecticide Resistance Monitoring in Culex quinquefasciatus - the Vector of Lymphatic Filariasis. J Commun Dis. 52(1): 61-64. DOI: https://doi.org/10.24321/0019.5138.202007.
Bhuvaneswari A, Shriram AN, Raju KHK, Kumar A. Mosquitoes, Lymphatic Filariasis, and Public Health: A Systematic Review of Anopheles and Aedes Surveillance Strategies. Pathogens. 2023 Nov 29;12(12):1406. doi: 10.3390/pathogens12121406. PMID: 38133290; PMCID: PMC10747758.
Bizhani N, Hashemi-Hafshejani S, Mohammadi N, Rezaei M, Bagher-Rokhni M. 2021. Lymphatic filariasis in Asia: a systematic review and meta-analysis. Parasitol Res 120: 411–422. https://doi.org/10.1007/s00436-020-06991-y
Chandrasiri PKGK, Fernando SD, De-Silva BGDNK. 2020. Insecticide resistance and molecular characterization of knockdown resistance (kdr) in Culex quinquefasciatus mosquitoes in Sri Lanka. Journal of Vector Ecology 45 (2): 204-210. https://onlinelibrary.wiley.com/doi/epdf/10.1111/jvec.12391.
Charlwood JD, Tomás EVE, Andegiorgish AK, Mihreteab S, LeClair C. 2018. We like it wet: a comparison between dissection techniques for the assessment of parity in Anopheles arabiensis and determination of sac stage in mosquitoes alive or dead on collection. PeerJ. 6:e5155. doi: 10.7717/peerj.5155.
Davis EL, Reimer LJ, Pellis L, Hollingsworth TD. 2019. Evaluating the Evidence for Lymphatic Filariasis Elimination. Trends Parasitol. 35(11):860-869. doi: 10.1016/j.pt.2019.08.003. Epub 2019 Sep 7. PMID: 31506245; PMCID: PMC7413036.
Derua YA, Rumisha SF, Batengana BM, Max DA, Stanley G, Kisinza WN, Mboera LEG. 2017. Lymphatic filariasis transmission on Mafia Islands, Tanzania: Evidence from xenomonitoring in mosquito vectors. PLoS Negl Trop Dis 11(10): e0005938. https://doi.org/10.1371/journal.pntd.0005938.
Dharmarajan G, Walker KD, Lehmann T. 2019. Variation in Tolerance to Parasites Affects Vectorial Capacity of Natural Asian Tiger Mosquito Populations. Curr Biol. 29(22):3946-3952.e5. doi: 10.1016/j.cub.2019.09.047.
Dickson BFR, Graves PM, Aye NN, Nwe TW, Wai T, Win SS, Shwe M, Douglass J, Bradbury R, McBride WJ. 2018. The prevalence of lymphatic filariasis infection and disease following six rounds of mass drug administration in Mandalay Region, Myanmar. PLoS Negl Trop Dis 12(11): e0006944. https://doi.org/10.1371/journal.pntd.0006944
Famakinde DO. 2018. Mosquitoes and the Lymphatic Filarial Parasites: Research Trends and Budding Roadmaps to Future Disease Eradication. Trop Med Infect Dis. 3(1):4. doi: 10.3390/tropicalmed3010004.
Fang Y, Shi WQ, Wu JT, Li YY, Xue JB, Zhang Y. 2019. Resistance to pyrethroid and organophosphate insecticides, and the geographical distribution and polymorphisms of target-site mutations in voltage-gated sodium channel and acetylcholinesterase 1 genes in Anopheles sinensis populations in Shanghai, China. Parasit Vectors. 12(1):396. doi: 10.1186/s13071-019-3657-7.
Fereda DE. 2022. Mating Behavior and Gonotrophic Cycle in Anopheles gambiae Complex and their Significance in Vector Competence and Malaria Vector Control. J Biomed Res Environ Sci. 3(1):031-043. doi: 10.37871/jbres1398, Article ID: JBRES1398, Available at: https://www.jelsciences.com/articles/jbres1398.pdf
Jeon J, Ryu J, Choi KS. 2024. Distribution and frequency of ace-1 and kdr mutations of Culex pipiens subgroup in the Republic of Korea. Acta Tropica. 249:107058. https://doi.org/10.1016/j.actatropica.2023.107058.
Johnson BJ, Hugo LE, Churcher TS, Ong OTW, Devine GJ. 2020. Mosquito Age Grading and Vector-Control Programmes. Trends Parasitol. 36(1):39-51. doi: 10.1016/j.pt.2019.10.011.
Juwita F, Chayati WH, Yuniastuti A. 2021. Risk Factors of Filariasis in Brebes Regency. Public Health Perspectives Journal. 5 (2) 2020 137-146. http://jurnal.unnes.ac.id/sju/index.php/phpj.
Laney SJ, Ramzy RM, Helmy HH, Farid HA, Ashour AA, Weil GJ, Williams SA. 2010. Detection of Wuchereria bancrofti L3 larvae in mosquitoes: a reverse transcriptase PCR assay evaluating infection and infectivity. PLoS Negl Trop Dis. 4(2):e602. doi: 10.1371/journal.pntd.0000602.
Lee H-J, Longnecker M, Calkins TL, Renfro AD, Fredregill CL, Debboun M, Pietrantonio PV. 2020. Detection of the Nav channel kdr-like mutation and modeling of factors affecting survivorship of Culex quinquefasciatus mosquitoes from six areas of Harris County (Houston), Texas, after permethrin field-cage tests. PLoS Negl Trop Dis 14(11): e0008860. https://doi.org/10.1371/journal. pntd.0008860.
Liu H, Cheng,P, Huang X, Dai Y, Wang H, Liu L, Zhao Y, Wang H, Gong M. 2013. Identification of TCT, a novel knockdown resistance allele mutation and analysis of resistance detection methods in the voltage-gated Na+ channel of Culex pipiens pallens from Shandong Province, China. Molecular Medicine Reports, 7(2): 525-530. https://doi.org/10.3892/mmr.2012.1184.
Liu H, Xie L, Cheng P, Xu J, Huang X, Wang H, Song X, Liu L, Wang H, Kou J, Yan G, Chen XG, Gong M. 2019. Trends in insecticide resistance in Culex pipiens pallens over 20 years in Shandong, China. Parasit Vectors. 12(1):167. doi: 10.1186/s13071-019-3416-9.
Local Burden of Disease 2019 Neglected Tropical Diseases Collaborators. 2020. The global distribution of lymphatic filariasis, 2000-18: a geospatial analysis. Lancet Glob Health. 8(9):e1186-e1194. doi: 10.1016/S2214-109X(20)30286-2. Erratum in: Lancet Glob Health. 2021 Oct;9(10):e1371.
Lopes RP, Lima JBP, Martins AJ. 2019. Insecticide resistance in Culex quinquefasciatus Say, 1823 in Brazil: a review. Parasites Vectors. 12:591. https://doi.org/10.1186/s13071-019-3850-8.
Lupenza E, Gasarasi DB, Minzi OM. 2021. Lymphatic filariasis, infection status in Culex quinquefasciatus and Anopheles species after six rounds of mass drug administration in Masasi District, Tanzania. Infect Dis Poverty. 10(1):20. doi: 10.1186/s40249-021-00808-5.
Mulyaningsih B, Umniyati SR, Hadisusanto S, Edyansyah E. 2021. Fauna associated with Malayan filariasis transmission in Banyuasin, South Sumatra, Indonesia, Veterinary World, 14(7):1954-1959. doi: www.doi.org/10.14202/vetworld.2021.1954-1959.
Nugroho SS, Mujiyono M. 2021. Pembaruan Informasi Taksonomi Nyamuk dan Kunci Identifikasi Fotografis Genus Nyamuk (Diptera: Culicidae) di Indonesia. J Entomol Indones. 18(1):55-73. DOI: 10.5994/jei.18.1.55.
Nurjazuli N, Saraswati LD, Kusariana N, Supali T. 2022. Status of lymphatic Filariasis Transmission after Two Additional Rounds of Filariasis Mass Drug Administration: A Case Study in Pekalongan City, Central Java, Indonesia. Open Access Maced J Med Sci. 14; 10(E):822-827. https://doi.org/10.3889/oamjms.2022.9
Omotayo AI, Dogara MM, Sufi D, Shuaibu T, Balogun J, Dawaki S, Muktar B, Adeniyi K, Garba N, Namadi I, Adam HA, Adamu S, Abdullahi H, Sulaiman A, Oduola AO. 2022. High pyrethroid-resistance intensity in Culex quinquefasciatus (Say) (Diptera: Culicidae) populations from Jigawa, North-West, Nigeria. PLoS Negl Trop Dis 16(6): e0010525. https://doi.org/10.1371/journal.pntd.0010525.
Pilagolla SAS, Amarasinghe LD. 2021. Assessing the Filariasis Causing Parasites in Adult Mosquitoes and the Vector Mosquito Larval Breeding in Selected Medical Officer of Helath Areas di Gampaha District, Sri Lanka. Journal of Tropical Medicine. Article ID 6643226. https://doi.org/10.1155/2021/6643226.
Prasetyowati H, Riandi MU, Hendri J, Ipa M. 2020. Entomological Assessment in Tangerang, Indonesia: Pist Transmission Assessment Survey of Lymphatic Filariasis Endemic Villages. Atlantis Press, Series: Advaces in Health Sciences Research. Proceedings of the 5th Universitas Ahmad Dahlan Public Health Conference (UPHEC). 2019: 67-71. https://doi.org/10.2991/ahsr.k.200311.012. https://www.atlantis-press.com/proceedings/uphec-19/125937195.
Pratiwi R, Anwar C, Salni, Hermansyah, Novrikasari, Ghiffari A, Putra R, Huda A. 2019. Species diversity and community composition of mosquitoes in a filariasis endemic area in Banyuasin District, South Sumatra, Indonesia. Biodiversitas 20: 453-462. DOI:10.13057/biodiv/d200222.
Rai P, Bharati M, Subba A, Saha D. 2019. Insecticide resistance mapping in the vector of lymphatic filariasis, Culex quinquefasciatus Say from northern region of West Bengal, India. PLoS One. 14(5):e0217706. doi: 10.1371/journal.pone.0217706.
Rai P, Bharati M, Subba A, Saha D. 2019. Insecticide resistance mapping in the vector of lymphatic filariasis, Culex quinquefasciatus Say from northern region of West Bengal, India. PLoS One. 14(5):e0217706. doi: 10.1371/journal.pone.0217706.
Ramzy RM, Farid HA, Kamal IH, Ibrahim GH, Morsy ZS, Faris R, Weil GJ, Williams SA, Gad AM. 1997. A polymerase chain reaction-based assay for detection of Wuchereria bancrofti in human blood and Culex pipiens. Trans R Soc Trop Med Hyg. 91(2):156-60. doi: 10.1016/s0035-9203(97)90205-4.
Rattanarithikul R, Harbach RE, Harrison BA, Panthusiri P, Jones JW, Coleman RE. 2005. Illustrated keys to the mosquitoes of Thailand. II. Genera Culex and Lutzia. Southeast Asian J Trop Med Public Health. 36 Suppl 2:1-97. https://pubmed.ncbi.nlm.nih.gov/16285260/
Satoto TBT, Pascawati NA, Wibawa T, Frutos R, Maguin S, Mulyawan IK, Wardana A. 2021. Entomological Index and Home Environment Contribution to Dengue Hemorrhagic Fever in Mataram City, Indonesia. Kesmas: National Public Health Journal. 15(1): 32-39 DOI:10.21109/kesmas.v15i1.3294
Silva-Martins WF, Wilding CS, Isaacs AT, Rippon EJ, Meggy K, Donelly MJ. 2019. Transcriptomic analysis of insecticide resistance in the lymphatic filariasis vector Culex quinquefasciatus. Sci Rep 9,11406. https://doi.org/10.1038/s41598-019-47850-w
Simón F, González-Miguel J, Diosdado A, Gómez PJ, Morchón R, Kartashev V. 2017. The Complexity of Zoonotic Filariasis Episystem and Its Consequences: A Multidisciplinary View. BioMed Research International. Article ID 6436130, https://doi.org/10.1155/2017/6436130.
Sinha A, Kumar S, Dayal D, Yadav V, Pramanik A, Chaubey KK, Kumar S. 2023. Elimination of lymphatic filariasis: Where do we stand so far? Asian Pac J Trop Med. 16(9):p 385-399. DOI: 10.4103/1995-7645.380729
Siperstein A, Pomeroy LW, Robare S, Sarko L, Dehus H, Lowmiller T, Fyie L, Meuti ME. 2023. Characterizing seasonal changes in the reproductive activity of Culex mosquitoes throughout the fall, winter, and spring in Ohio. Parasit Vectors. 16(1):173. doi: 10.1186/s13071-023-05806-0.
Talipouo A, Mavridis K, Nchoutpouen E, Djiappi-Tchamen B, Fotakis EA, Kopya E, Bamou R, Kekeunou S, Awono-Ambene P, Balabanidou V, Balaska S, Wondji CS, Vontas J, Antonio-Nkondjio C. 2021. High insecticide resistance mediated by different mechanisms in Culex quinquefasciatus populations from the city of Yaoundé, Cameroon. Sci Rep. 11:7322. https://doi.org/10.1038/s41598-021-86850-7.
WHO. 2013. Global Programme to Eliminate Lymphatic Filariasis: Practical Entomology. https://www.who.int/publications/i/item/who-wer8938.
Wilairatana P, Kotepui KU, Mala W, Wangdi K, Kotepui M. 2022. Prevalence, probability, and characteristics of malaria and filariasis co-infections: A systematic review and meta-analysis. PLoS Negl Trop Dis 16(10): e0010857. https://doi.org/10.1371/journal.pntd.0010857.
Zerbo A, Delgado RC, González PA. 2021. Exploring the dynamic complexity of risk factors for vector-borne infections in sub-Saharan Africa: Case of urban lymphatic filariasis. Journal of Biosafety and Biosecurity, 3(1):17-21. doi: https://doi.org/10.1016/j.jobb.2021.03.002. https://www.sciencedirect.com/science/article/pii/S2588933821000054.