Therapeutic potential of multi-targeting phytochemicals derived from Apium graveolens ethanol extract in West Java, Indonesia against multidrug-resistant Pseudomonas aeruginosa

##plugins.themes.bootstrap3.article.main##

HAFIZAH ILMI SUFA
IIS KURNIATI
ASEP DERMAWAN
YOGI KHOIRUL ABROR
ASEP IIN NUR INDRA
DICKI BAKHTIAR PURKON

Abstract

Abstract. Sufa HI, Kurniati I, Dermawan A, Abror YK, Indra AIN, Purkon DB. 2024. Therapeutic potential of multi-targeting phytochemicals derived from Apium graveolens ethanol extract in West Java, Indonesia against multidrug-resistant Pseudomonas aeruginosa. Biodiversitas 25: 2183-2190. This study aims to evaluate the antibacterial efficacy of Apium graveolens (AG) extract from West Java, Indonesia against MDR-P. aeruginosa species responsible for nosocomial infection. Several assessments of antibacterial activity in vitro were conducted, including the enumeration of bacterial colonies, the measurement of the inhibition zone by agar well diffusion, determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) values, and the observation of cell damage using Scanning Electron Microscopy (SEM). The results have demonstrated that AG extract from West Java, Indonesia, possesses significant potential as an antimicrobial agent against MDR-P. aeruginosa. The Apium graveolens extract, at concentrations of 50, 100, and 200 mg/mL, reduced MDR-P. aeruginosa colonies by 59.3%, 65.7%, and 82%, respectively. The inhibition zone sizes ranged from 7 to 12 mm for 50 mg/mL, 8 to 16 mm for 100 mg/mL, and 16 to 17 mm for 200 mg/mL. The MIC values of 100 mg/mL for PA1 and PA3, 200 mg/mL for PA2, with an MBC value of 200 mg/mL for each test. Scanning electron microscope observation indicated that treatment with 100 mg/mL of AG extract caused significant damage to bacterial cells. In conclusion, A. graveolens extracts show promise as potential antibacterial agents against nosocomial infections caused by MDR-P. aeruginosa. Further research, including in vivo studies of the antibacterial mechanism of action, is warranted.

##plugins.themes.bootstrap3.article.details##

References
Aboody MS. 2021. Cytotoxic, antioxidant, and antimicrobial activities of celery (Apium graveolens L.). Bioinformation 17(1) 147-156. DOI: 10.6026/97320630017147.
Adeniyi BA, Adetoye A, Ayeni FA. 2015. Antibacterial activities of lactic acid bacteria isolated from cow faeces against potential enteric pathogens. Afr Health Sci 15(3): 888-895. DOI: 10.4314/ahs.v15i3.24.
CDC [Centers for Disease Control and Prevention]. 2021. Antibiotic resistance and patient safety portal; multidrug-resistant Pseudomonas aeruginosa. U.S. Department of Health and Human Service. https://arpsp.cdc.gov/profile/antibiotic-resistance/mdr-pseudomonas-aeruginosa?hidden=
Ciptaningtyas VR, Lestari ES, Wahyono H. 2019. Pseudomonas aeruginosa resistance in Southeast Asia. Sains medika 10 (1): 84-92. DOI: http://jurnal.unissula.ac.id/indexphp/sainsmedika.
CLSI [Clinical Laboratory Standard International]. 2020. M100 Performance Standards for Antimicrobial Susceptibility Testing, 30th ed. J Serv Marketing. https://www.nih.org.pk/wp-content/uploads/2021/02/CLSI-2020.pdf.
Cylke C, Si F, Banerjee S. 2022. Effects of antibiotics on bacterial cell morphology and their physiological origins. Biochem Soc Trans 50(5): 1269-1279. DOI: 10.1042/BST20210894.
Demain AL, Martens E. 2017. Production of valuable compounds by molds and yeasts. The journal of Antibiotics 70(4): 347-360. DOI: 10.1038/ja.2016.121.
Eve A, Aliero AA, Nalubiri D, Adeyemo RO, Akinola SA, Pius T, Nabaasa S, Nabukeera S, Alkali B, Ntulume I. 2020. In vitro antibacterial activity of crude extracts of Artocarpus heterophyllus seeds against selected diarrhoea-causing superbug bacteria. Sci World J 2020. DOI: 10.1155/2020/9813970.
Fabian P, Alimsardjono L, Indiastuti DN, 2016. Pola resistensi bakteri Pseudomonas aeruginosa dan Acinetobacter baumannii pada spesimen darah terhadap antibiotik golongan ?-laktam dan aminoglikosida di Rumah Sakit dr. Soetomo periode Januari 2016 – Desember 2016. Jurnal Kedokteran Syiah Kuala 20(1): 31-36. DOI: https://doi.org/10.24815/jks.v20i1.18296.
Foudah AI, Alqarni MH, Alam A, Salkini MA, Alam P, Alkholifi FK, Yusufoglu HS. 2021. Determination of chemical composition, in vitro and in silico evaluation of essential oil from leaves of Apium graveolens grown in Saudi Arabia. Molecules 26(23): 7372-7378. DOI: 10.3390/molecules26237372.
Goncalves T, Vasconcelos U. 2021. Colour me blue: the history and the biotechnological potential of pyocyanin. Molecules 26(4): 927-935. DOI: 10.3390/molecules26040927.
Hall S, McDermott C, Anoopkumar-Dukie S, McFarland AJ, Forbes A, Perkins AV, Davey AK, Chess-Williams R, Kiefel MJ, Arora D, Grant GD. 2016. Cellular effects of pyocyanin, a secreted virulence factor of Pseudomonas aeruginosa. Toxin 236 (8): 1-14. DOI: 10.3390/toxins8080236.
Hazard D, Cube MV, Kailer K, Wolkewitz M. 2021. Predicting potential prevention effects on hospital burden of nosocomial infections; a multistate modeling approach. Value in Health 24(6): 830–838. DOI: 10.1016/j. jval.2021.02.002.
Hoxha A, Duysburgh E, and Mortgat L. 2019. Healthcare-associated infections in home healthcare; an extensive assessment. Euro Surveill 26(5): 1-10. DOI: 10.2807/1560-7917.ES.2021.26.5.1900646.
Kovac J, Slobodnikova L, Trajcikova E, Rendekova K, Mucaji P, Sychrova A, Fialova SB. 2023. Therapeutic potential of flavonoids and tannins in management of oral infectious diseases—a review. Molecules 28(1): 158-166. DOI: 10.3390/molecules28010158.
Liao C, Huang X, Wang Q, Yao D, Lu W. 2022. Virulence Factors of Pseudomonas aeruginosa and antivirulence strategies to combat its drug resistance. Frontiers in Cellullar Infection Microbioly 12: 1-17. DOI: 10.3389/fcimb.2022.926758.
Madau HS, Mokoboki HK, Ravhuhali KE, Mkhize Z. 2022. effect of soil type: qualitative and quantitative analysis of phytochemicals in some browse species leaves found in savannah biome of South Africa. Molecules 27(5): 1462-1469. doi: 10.3390/molecules27051462.
McDermott C, Chess-Williams R, Mills KA, Kang SH, Farr SE, Grant GD, Perkins AV, Davey AK, Anoopkumar-Dukie S. 2013. Alterations in acetylcholine, PGE2 and IL6 release from urothelial cells following treatment with pyocyanin and lipopolysaccharide. Vitro Intern. J. Publ. Assoc 27:1693–1698. DOI: 10.1016/j.tiv.2013.04.015.
McFarland AJ, Grant GD, Perkins AV, Flegg C, Davey AK, Allsopp TJ, Renshaw G, Kavanagh J, McDermott CM, Anoopkumar-Dukie S. 2013. Paradoxical role of 3-methyladenine in pyocyanin-induced toxicity in 1321N1 astrocytoma and SH-SY5Y neuroblastoma cells. Intern. J. Toxicol. 32:209–218. DOI: 10.1177/1091581813482146.
Momentah AM, Bakti RA, Jalal NA, Ashgar SS, Felemban RF, Bantun F, Hariri SH, Barhameen AA, Faidah H, Al-Said HM. 2023. Antimicrobial resistance pattern of Pseudomonas aerugiosa: An 11-year experience in a tertiary care hospital in Makkah, Saudi Arabia. Infection and Drug Resistance 16: 4113-4122. DOI: 10.2147/IDR.S409726.
Mujeeb F, Bajpai P, Pathak N. 2014. Phytochemical evaluation, antimicrobial activity, and determination of bioactive components from leaves of Aegle marmelos. BioMed Research International 2014:1-11. DOI: 10.1155/2014/497606
Prakoso YA, Rini CS, Rahayu A, Sigit M, Widhowati. 2020. Celery (Apium graveolens) as a potential antibacterial agent and its effect on cytokeratin-17 and other healing promoters in skin wounds infected with methicillin-resistant Staphylococcus aureus. Vet world 13(5): 865-871. DOI: 10.14202/vetworld.2020.865-871.
Prastiyanto M. 2021. Seeds extract of three Artocarpus species: Their in-vitro antibacterial activities against multidrug-resistant (MDR) Escherichia coli isolates from urinary tract infections (UTIs). Biodiversitas 22(10): 4356-4362. DOI: 10.13057/biodiv/d221028.
Raoofi S, Kan FP, Rafiei S, HosseinipalaZgi X, Mejareh ZN, Khani S, Abdollahi B, Talab FS, Sanaei M, Zarabi F, Dolati Y, Ahmadi N, Raoofi N, Sarhadi Y, Masoumi M, Hosseini BS, Vali N, Gholamali N, Asadi S, Ahmadi S, Ahmadi B, Chomalu ZB, Asadollahi E, Rajabi M, Gharagozloo D, Nejatifar Z, Soheylirad R, Jalali S, Aghajani F, Navidriahy M, Deylami S, Nasiri M, Zareei M, Golmohammadi Z, Shabani H, Torabi H, Shabaninejad H, Nemati A, Amerzadeh M, Aryankhesal A, Ghashghaee A. 2023. Global prevalence of nosocomial infection; A systematic review and meta-analysis. Plos One Journal 18(1): 1-10. DOI: 10.1371/journal.pone.0274248.
Stewart S, Robertson C, Pan J, Kennedy S, Dancer S, Haahr L, Manoukian S, Mason H, Kavanagh K, Cook B, Reilly J. 2021. Epidemiology of healthcare-associated infection reported from a hospital-wide incidence study; considerations for infection prevention and control planning. Journal of Hospital Infection 114: 10-22. DOI: 10.1016/j.jhin.2021.03.031.
Sufa HI, Budiarti S, Rusmana, I. 2018. Diversity of uropathogenic Escherichia coli lytic phage from Cisadane River, West Java, Indonesia based on morphology and protein molecular weight characteristics. Biodiversitas 19(6): 2359-2364. DOI: 10.13057/biodiv/d190646.
Widyaningrum I, Wibisono N, Kusumawati AH. 2020. Effect of extraction method on antimicrobial activity against Staphylococcus aureus of tapak liman (Elephantopus scaber l.) leaves. International Journal of Health & Medical Sciences 3(1): 105-110. DOI: 10.31295/ijhms.v3n1.181
Yayan J, Ghebremedhin B, Rasche K. 2015. Antibiotic resistance of Pseudomonas aeruginosa in pneumonia at a single university hospital center in Germany over a 10-year period. Plos One 10: 1-10. DOI: E0139836.