Biodegradability and formulation of triclosan-degrading and plant-growth-promoting Pseudomonas sp. MS45

##plugins.themes.bootstrap3.article.main##

MERRY KRISDAWATI SIPAHUTAR

Abstract

Abstract. Sipahutar MK. 2024. Biodegradability and formulation of triclosan-degrading and plant-growth-promoting Pseudomonas sp. MS45. Biodiversitas 25: 2980-2992. This study presents the isolation of Pseudomonas sp. MS45, a microorganism that can consume triclosan (TCS) as its only carbon and energy source, leading to its detoxification. The rarity of a toxicity study of TCS before and after biodegradation treatment is addressed in this study. Allium cepa's genotoxicity exposed TCS's cytotoxicity, generating multiple damaged chromosomes, in contrast to the insignificant consequences of its broken-down metabolites. The study also optimized the different kinetic parameters for TCS-specific biodegradation and Pseudomonas sp. MS45-specific growth. The biodegradation pattern followed the Michaelis-Menten model with a maximum specific biodegradation rate (Vmax) of 0.01 µmole h-1 mg cell protein-1 and a half saturation constant (Ks) of 21.98 µM. The growth pattern followed the Haldane model with a maximum specific growth rate (µmax) of 0.03 h-1, half saturation constant (Ks) of 4.56 µM, and TCS inhibition constant (Ki) of 32.81 µM. In addition to its TCS-degrading ability, Pseudomonas sp. MS45 also possesses various plant growth promotion traits, and it was incorporated into two solid carrier formulations: vermiculite and rice bran. The study found that vermiculite, especially with PEG, was the most consistent formulation for Pseudomonas sp. MS45, in terms of maintaining bacterial survival and TCS-degrading ability. This study marks the initial report on the biodegradation and formulation of TCS-destroying and Plant-Growth-Promoting (PGP) Pseudomonas sp. MS45, offering promising implications for environmental and agricultural applications.

##plugins.themes.bootstrap3.article.details##

References
Aguilar-Romero I, Romero E, Wittich R-M, van Dillewijn P. 2020. Bacterial ecotoxicity and shifts in bacterial communities associated with the removal of ibuprofen, diclofenac and triclosan in biopurification systems. Science of The Total Environment 741: 140461. DOI: 10.1016/j.scitotenv.2020.140461.
Alves ARA, Yin Q, Oliveira, Rui S, Silva EF, Novo LAB. 2022. Plant growth-promoting bacteria in phytoremediation of metal-polluted soils: Current knowledge and future directions. Science of The Total Environment 838: 156435. DOI: 10.1016/j.scitotenv.2022.156435.
Araujo J, Díaz-Alcántara, C-A, Urbano B, González-Andrés F. 2020. Inoculation with native Bradyrhizobium strains formulated with biochar as carrier improves the performance of pigeonpea (Cajanus cajan L.). European Journal of Agronomy 113: 125985. DOI: 10.1016/j.eja.2019.125985.
Araújo MJ, Quintaneiro C, Rocha RJM, Pousão-Ferreira P, Candeias-Mendes A, Soares AMVM, Monteiro MS. 2022. Single and combined effects of ultraviolet radiation and triclosan during the metamorphosis of Solea senegalensis. Chemosphere 307: 135583. DOI: 10.1016/j.chemosphere.2022.135583.
Balakrishnan P, Mohan S. 2021. Treatment of triclosan through enhanced microbial biodegradation. Journal of Hazardous Materials 420: 126430. DOI: 10.1016/j.jhazmat.2021.126430.
Blanco-Vargas A, Rodríguez-Gacha LM, Sánchez-Castro N, Garzón-Jaramillo R, Pedroza-Camacho LD, Poutou-Piñales RA, Rivera-Hoyos CM, Díaz-Ariza LA, Pedroza-Rodríguez AM. 2020. Phosphate-solubilizing Pseudomonas sp., and Serratia sp., co-culture for Allium cepa L. growth promotion. Heliyon 6 (10): e05218. DOI: 10.1016/j.heliyon.2020.e05218.
Chan SS, Khoo KS, Chew KW, Ling TC, Show PL. 2022. Recent advances biodegradation and biosorption of organic compounds from wastewater: Microalgae-bacteria consortium—A review. Bioresource Technology 344: 126159. DOI: 10.1016/j.biortech.2021.126159.
Chen Y, Chen Y, Jia J, Yan B. 2022. Triclosan detoxification through dechlorination and oxidation via microbial Pd-NPs under aerobic conditions. Chemosphere 286: 131836. DOI: 10.1016/j.chemosphere.2021.131836.
Chen J, Zhang B, Wang C, Wang P, Cui G, Gao H, Feng B, Zhang J. 2024. Insight into the enhancement effect of humic acid on microbial degradation of triclosan in anaerobic sediments. Journal of Hazardous Materials 461: 132549. DOI: 10.1016/j.jhazmat.2023.132549.
Contardo-Jara V, Meinecke S, Feibicke M, Berghahn R, Schmidt R, Mohr S. 2021. Fate, bioaccumulation and toxic effects of triclosan on a freshwater community – A mesocosm study. Environmental Advances 5: 100100. DOI: 10.1016/j.envadv.2021.100100.
Cruz JA, Tubana BS, Fultz LM, Dalen MS, Ham JH. 2022. Identification and profiling of silicate-solubilizing bacteria for plant growth-promoting traits and rhizosphere competence. Rhizosphere 23: 100566. DOI: 10.1016/j.rhisph.2022.100566.
Cui K, Xu T, Chen J, Yang H, Liu X, Zhuo R, Peng Y, Tang W, Wang R, Chen L, Zhang X, Zhang Z, He Z, Wang X, Liu C, Chen Y, Zhu Y. 2022. Siderophores, a potential phosphate solubilizer from the endophyte Streptomyces sp. CoT10, improved phosphorus mobilization for host plant growth and rhizosphere modulation. Journal of Cleaner Production 367: 133110. DOI: 10.1016/j.jclepro.2022.133110.
Dai H, Gao J, Li D, Wang Z, Cui Y, Zhao Y. 2022. Family Sphingomonadaceae as the key executor of triclosan degradation in both nitrification and denitrification systems. Chemical Engineering Journal 442: 136202. DOI: 10.1016/j.cej.2022.136202.
Dai H, Gao J, Li D, Wang Z, Duan W. 2022. DNA-based stable isotope probing deciphered the active denitrifying bacteria and triclosan-degrading bacteria participating in granule-based partial denitrification process under triclosan pressure. Water Research 210: 118011. DOI: 10.1016/j.watres.2021.118011.
Devatha CP, Pavithra N. 2019. Isolation and identification of Pseudomonas from wastewater, its immobilization in cellulose biopolymer and performance in degrading Triclosan. Journal of Environmental Management 232: 584–591. DOI: 10.1016/j.jenvman.2018.11.083.
Dong X, He Y, Peng X, Jia X. 2021. Triclosan in contact with activated sludge and its impact on phosphate removal and microbial community. Bioresource Technology 319: 124134. DOI: 10.1016/j.biortech.2020.124134.
Dou R N, Wang JH, Chen Y C, Hu YY. 2018. The transformation of triclosan by laccase: Effect of humic acid on the reaction kinetics, products and pathway. Environmental pollution 234: 88-95. DOI: 10.1016/j.envpol.2017.10.119.
Durán-Álvarez JC, Prado B, González D, Sánchez Y, Jiménez-Cisneros B. 2015. Environmental fate of naproxen, carbamazepine and triclosan in wastewater, surface water and wastewater irrigated soil—Results of laboratory scale experiments. Science of the Total Environment 538: 350-362. DOI: 10.1016/j.scitotenv.2015.08.028.
Fitriatin BN. 2022. Characterization and bioassay of rhizophosphate bacteria producing phytohormone and organic acid to enhance the maize seedling growth. Polish Journal of Soil Science 55 (2) 93-104. DOI: 10.17951/pjss.2022.55.2.93-104.
Franke S, Seidel K, Adrian L, Nijenhuis I. 2020. Dual element (C/Cl) isotope analysis indicates distinct mechanisms of reductive dehalogenation of chlorinated ethenes and dichloroethane in dehalococcoides mccartyi strain BTF08 with defined reductive dehalogenase inventories. Frontiers in Microbiology 11: 1507. DOI: 10.3389/fmicb.2020.01507.
Gopalakrishnan S, Sathya A, Vijayabharathi R, Srinivas V. 2016. Formulations of plant growth-promoting microbes for field applications. In D. P. Singh, H. B. Singh, & R. Prabha (Eds.), Microbial Inoculants in Sustainable Agricultural Productivity 2: 239–251. DOI: 10.1007/978-81-322-2644-4_15.
Goswami D, Dhandhukia P, Patel P, Thakker JN. 2014. Screening of PGPR from saline desert of Kutch: Growth promotion in Arachis hypogea by Bacillus licheniformis A2. Special Issue on Plant Growth Promotion 169 (1): 66–75. DOI: 10.1016/j.micres.2013.07.004.
Granatto CF, Grosseli GM, Sakamoto IK, Fadini PS, Varesche MBA. 2021. Influence of metabolic cosubstrates on methanogenic potential and degradation of triclosan and propranolol in sanitary sewage. Environmental Research 199: 111220. DOI: 10.1016/j.envres.2021.111220.
Hajieghrari M, Hejazi P. 2020. Enhanced biodegradation of n-Hexadecane in solid-phase of soil by employing immobilized Pseudomonas Aeruginosa on size-optimized coconut fibers. Journal of hazardous materials 389: 122134. DOI: 10.1016/j.jhazmat.2020.122134.
Haq I, Raj A. 2018. Biodegradation of Azure-B dye by Serratia liquefaciens and its validation by phytotoxicity, genotoxicity and cytotoxicity studies. Chemosphere 196: 58-68. DOI: 10.1016/j.chemosphere.2017.12.153.
He Z, Honeycutt CW. 2005. A Modified Molybdenum Blue Method for Orthophosphate Determination Suitable for Investigating Enzymatic Hydrolysis of Organic Phosphates. Communications in Soil Science and Plant Analysis 36 (9–10): 1373–1383. DOI: 10.1081/CSS-200056954.
Hirsch PR, Mauchline TH. 2015. Chapter Two—The Importance of the microbial N cycle in soil for crop plant nutrition. In S. Sariaslani & G. M. Gadd (Eds.), Advances in Applied Microbiology 93: 45–71. DOI: 10.1016/bs.aambs.2015.09.001.
Holkar CR, Pandit AB, Pinjari DV. 2014. Kinetics of biological decolorisation of anthraquinone based Reactive Blue 19 using an isolated strain of Enterobacter sp.F NCIM 5545. Bioresource Technology 173: 342–351. DOI: 10.1016/j.biortech.2014.09.108.
Jayalatha NA, Devatha CP. 2023. Experimental investigation for treating ibuprofen and triclosan by biosurfactant from domestic wastewater. Journal of Environmental Management 328: 116913. DOI: 10.1016/j.jenvman.2022.116913.
KJ D, Brahmaprakash G. 2014. Influence of form and concentration of the osmolytes in liquid inoculants formulations of plant growth promoting bacteria. International Journal of Scientific and Research Publications 449 (7): 449-454. DOI: 10.29322.
K Soni R, Bhatt NS, Modi HA, Acharya PB. 2016. Decolorization, degradation and subsequent toxicity assessment of reactive Red 35 by Enterococcus gallinarum. Current Biotechnology 5 (4): 325-336. DOI: 10.2174.
Kumar V, Ameen F, Islam MA, Agrawal S, Motghare A, Dey A, Shah MP, Américo-Pinheiro JHP, Singh S, Ramamurthy PC. 2022. Evaluation of cytotoxicity and genotoxicity effects of refractory pollutants of untreated and biomethanated distillery effluent using Allium cepa. Environmental Pollution 300: 118975. DOI: 10.1016/j.envpol.2022.118975.
Li Q, Yu J, Chen W, Ma X, Li G, Chen G, Deng J. 2018. Degradation of triclosan by chlorine dioxide: reaction mechanism, 2, 4-dichlorophenol accumulation and toxicity evaluation. Chemosphere 207: 449-456. DOI: 10.1016/j.chemosphere.2018.05.065.
Ma C, Hua J, Li H, Zhang J, Luo S. 2022. Inoculation with carbofuran-degrading rhizobacteria promotes maize growth through production of IAA and regulation of the release of plant-specialized metabolites. Chemosphere 307: 136027. DOI: 10.1016/j.chemosphere.2022.136027.
Maadani Mallak A, Lakzian A, Khodaverdi E, Haghnia GH, Mahmoudi S. 2020. Effect of Pleurotus ostreatus and Trametes versicolor on triclosan biodegradation and activity of laccase and manganese peroxidase enzymes. Microbial Pathogenesis 149: 104473. DOI: 10.1016/j.micpath.2020.104473.
Maheshwari DK, Dubey RC, Agarwal M, Dheeman S, Aeron A, Bajpai VK. 2015. Carrier based formulations of biocoenotic consortia of disease suppressive Pseudomonas aeruginosa KRP1 and Bacillus licheniformis KRB1. Ecological Engineering 81: 272–277. DOI: 10.1016/j.ecoleng.2015.04.066.
McPherson MR, Wang P, Marsh EL, Mitchell RB, Schachtman DP. 2018. Isolation and analysis of microbial communities in soil, rhizosphere, and roots in perennial grass experiments. Journal of Visualized Experiments 137: e57932. DOI: 10.3791/57932.
Nandikes G, Pathak, P, Razak AS, Narayanamurthy V, & Singh L. 2022. Occurrence, environmental risks and biological remediation mechanisms of Triclosan in wastewaters: Challenges and perspectives. Journal of Water Process Engineering 49: 103078. DOI: 10.1016/j.jwpe.2022.103078.
Naseem H, Ahsan M, Shahid MA, Khan N. 2018. Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. Journal of Basic Microbiology 58 (12): 1009–1022. DOI: 10.1002/jobm.201800309.
Nie E, Wang H, Chen Y, Lu Y, Akhtar K, Riaz M, Zhang S, Yu Z, Ye Q. 2022. Distinct uptake and accumulation profiles of triclosan in youdonger (Brassica campestris subsp. Chinensis var. Communis) under two planting systems: Evidence from 14C tracing techniques. Chemosphere 288: 132651. DOI: 10.1016/j.chemosphere.2021.132651.
Olanrewaju OS, Glick BR, Babalola OO. 2017. Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology 33 (11): 197. DOI: 10.1007/s11274-017-2364-9.
Pan Y, Zheng X, Xiang Y. 2021. Structure-function elucidation of a microbial consortium in degrading rice straw and producing acetic and butyric acids via metagenome combining 16S rDNA sequencing. Bioresource Technology 340: 125709. DOI: 10.1016/j.biortech.2021.125709.
Pacwa-P?ociniczak M, P?ociniczak T, Iwan J, ?arska M, Chor??ewski M, Dzida M, Piotrowska-Seget Z. 2016. Isolation of hydrocarbon-degrading and biosurfactant-producing bacteria and assessment their plant growth-promoting traits. Journal of environmental management 168: 175-184. DOI: 10.1016/j.jenvman.2015.11.058.
Phulpoto IA, Yu Z, Li J, Ndayisenga F, Hu B, Qazi MA, Yang X. 2022. Evaluation of di-rhamnolipid biosurfactants production by a novel Pseudomonas sp. S1WB: Optimization, characterization and effect on petroleum-hydrocarbon degradation. Ecotoxicology and Environmental Safety 242: 113892. DOI: 10.1016/j.ecoenv.2022.113892.
Qi X, Wang H, Gao X, Zhang L, Wang S, Wang X, Xu P. 2022. Efficient power recovery from aromatic compounds by a novel electroactive bacterium Pseudomonas putida B6-2 in microbial fuel cells. Journal of Environmental Chemical Engineering 10 (6): 108536. DOI: 10.1016/j.jece.2022.108536.
Qu S, Shen C, Zhang L, Wang J, Zhang L-M, Chen B, Sun G-X, Ge Y. 2023. Dispersal limitation and host selection drive geo-specific and plant-specific differentiation of soil bacterial communities in the Tibetan alpine ecosystem. Science of The Total Environment 863: 160944. DOI: 10.1016/j.scitotenv.2022.160944.
Reeves MW, Pine L, Neilands JB, Balows A. 1983. Absence of siderophore activity in Legionella species grown in iron-deficient media. Journal of Bacteriology 154 (1): 324–329. DOI: 10.1128/jb.154.1.324-329.1983.
Satapute P, Paidi MK, Kurjogi M, Jogaiah S. 2019. Physiological adaptation and spectral annotation of Arsenic and Cadmium heavy metal-resistant and susceptible strain Pseudomonas taiwanensis. Environmental Pollution 251: 555–563. DOI: 10.1016/j.envpol.2019.05.054.
Schlatter DC, Gamble JD, Castle S, Rogers J, Wilson M. 2022. Abiotic and biotic filters determine the response of soil bacterial communities to manure amendment. Applied Soil Ecology 180: 104618. DOI: 10.1016/j.apsoil.2022.104618.
Scussel R, Feltrin AC, Angioletto E, Galvani NC, Fagundes MÍ, Bernardin AM, Feuser PE, de Ávila RAM, Pich CT. 2022. Ecotoxic, genotoxic, and cytotoxic potential of leachate obtained from chromated copper arsenate-treated wood ashes. Environmental Science and Pollution Research 29 (27): 41247–41260. DOI: 10.1007/s11356-021-18413-2.
Shah Z, Gulzar M, Hasan F, Shah AA. 2016. Degradation of polyester polyurethane by an indigenously developed consortium of Pseudomonas and Bacillus species isolated from soil. Polymer Degradation and Stability 134: 349-356. DOI: 10.1016/j.polymdegradstab.2016.11.003.
Sharma A, Vázquez LAB, Hernández EOM, Becerril MYM, Oza G, Ahmed SSSJ, Ramalingam S, Iqbal HMN. 2022. Green remediation potential of immobilized oxidoreductases to treat halo-organic pollutants persist in wastewater and soil matrices—A way forward. Chemosphere 290: 133305. DOI: 10.1016/j.chemosphere.2021.133305.
Sharma B, Tiwari S, Kumawat KC, Cardinale M. 2022. Nano-biofertilizers as bio-emerging strategies for sustainable agriculture development: Potentiality and their limitations. Science of The Total Environment 860: 160476. DOI: 10.1016/j.scitotenv.2022.160476.
Silambarasan S, Vangnai AS. 2016. Biodegradation of 4-nitroaniline by plant-growth promoting Acinetobacter sp. AVLB2 and toxicological analysis of its biodegradation metabolites. Journal of Hazardous Materials 302: 426–436. DOI: 10.1016/j.jhazmat.2015.10.010.
Silva VP, Pereira OG, Leandro ES, Da Silva TC, Ribeiro KG, Mantovani HC, Santos SA. 2016. Effects of lactic acid bacteria with bacteriocinogenic potential on the fermentation profile and chemical composition of alfalfa silage in tropical conditions. Journal of Dairy Science 99 (3) 1895-1902. DOI: 10.3168/jds.2015-9792.
Sindhu SS, Phour M, Choudhary SR, Chaudhary D. 2014. Phosphorus cycling: prospects of using rhizosphere microorganisms for improving phosphorus nutrition of plants. In N. Parmar & A. Singh (Eds.), Geomicrobiology and Biogeochemistry 39 (1): 199–237. DOI: 10.1007/978-3-642-41837-2_11.
Singh R, Arora NK. 2023. Bacterial formulations and delivery systems against pests in sustainable agro-food production. In Reference Module in Food Science 1: 1-11. DOI: 10.1016/B978-0-12-823960-5.00064-0.
Singh VK, Singh AK, Singh PP, Kumar A. 2018. Interaction of plant growth promoting bacteria with tomato under abiotic stress: A review. Agriculture, Ecosystems & Environment 267: 129–140. DOI: 10.1016/j.agee.2018.08.020.
Sipahutar MK, Piapukiew J, Vangnai AS. 2018. Efficiency of the formulated plant-growth promoting Pseudomonas fluorescens MC46 inoculant on triclocarban treatment in soil and its effect on Vigna radiata growth and soil enzyme activities. Journal of Hazardous Materials 344: 883–892. DOI: 10.1016/j.jhazmat.2017.11.046.
Sipahutar MK, Vangnai AS. 2017. Role of plant growth-promoting Ochrobactrum sp. MC22 on triclocarban degradation and toxicity mitigation to legume plants. Journal of Hazardous Materials 329: 38–48. DOI: 10.1016/j.jhazmat.2017.01.020.
Subba Reddy GV, Rafi MM, Rubesh Kumar S, Khayalethu N, Muralidhara Rao D, Manjunatha B, Philip GH, Reddy BR. 2016. Optimization study of 2-hydroxyquinoxaline (2-HQ) biodegradation by Ochrobactrum sp. HQ1. 3 Biotech 6: 1-11. DOI: 10.1007/s13205-015-0358-6.
Sun C, Zhang T, Zhou Y, Liu ZF, Zhang Y, Bian Y, Feng XS. 2023. Triclosan and related compounds in the environment: Recent updates on sources, fates, distribution, analytical extraction, analysis, and removal techniques. Science of The Total Environment 870: 161885. DOI: 10.1016/j.scitotenv.2023.161885.
Sun W, Alexander T, Man Z, Xiao F, Cui, F, Qi X. 2018. Enhancing 2-ketogluconate production of Pseudomonas plecoglossicida JUIM01 by maintaining the carbon catabolite repression of 2-ketogluconate metabolism. Molecules 23 (10): 2629. DOI: 10.3390/molecules23102629.
Suthar S, Chand N, Singh V. 2023. Fate and toxicity of triclosan in tidal flow constructed wetlands amended with cow dung biochar. Chemosphere, 311: 136875. DOI: 10.1016/j.chemosphere.2022.136875.
Ta?tan BE, Tekinay T, Çelik HS, Özdemir C, Cakir DN. 2017. Toxicity assessment of pesticide triclosan by aquatic organisms and degradation studies. Regulatory Toxicology and Pharmacology 91: 208–215. DOI: 10.1016/j.yrtph.2017.10.030.
Thelusmond J-R, Strathmann TJ, Cupples AM. 2019. Carbamazepine, triclocarban and triclosan biodegradation and the phylotypes and functional genes associated with xenobiotic degradation in four agricultural soils. Science of The Total Environment 657: 1138–1149. DOI: 10.1016/j.scitotenv.2018.12.145.
Vocciante M, Grifoni M, Fusini D, Petruzzelli G, Franchi E. 2022. The role of plant growth-promoting rhizobacteria (PGPR) in mitigating plant’s environmental stresses. Applied sciences 12 (3): 1231. DOI: 10.3390/app12031231
Wang S, Yin Y, Wang J. 2017. Enhanced biodegradation of triclosan by means of gamma irradiation. Chemosphere 167: 406–414. DOI: 10.1016/j.chemosphere.2016.10.028.
Yadav A, Raj A, Purchase D, Ferreira LFR, Saratale GD, Bharagava RN. 2019. Phytotoxicity, cytotoxicity and genotoxicity evaluation of organic and inorganic pollutants rich tannery wastewater from a Common Effluent Treatment Plant (CETP) in Unnao district, India using Vigna radiata and Allium cepa. Chemosphere 224: 324–332. DOI: 10.1016/j.chemosphere.2019.02.124.