Structure and function role of soil nematode communities in different types of vegetation in Yogyakarta and Central Java, Indonesia

##plugins.themes.bootstrap3.article.main##

SIWI INDARTI
SRI NURYANI HIDAYAH UTAMI
NUGROHO SUSETYA PUTRA
RINA MAHARANI

Abstract

Abstract. Indarti S, Utami SNH, Putra NS, Maharani R. 2024. Structure and function role of soil nematode communities in different types of vegetation in Yogyakarta and Central Java, Indonesia. Biodiversitas 25: 2765-2772. Soil nematodes are crucial parts of the soil organism community and play a significant role in many ecological soil processes. It is necessary to pay greater attention to the lack of knowledge regarding the composition and role of the soil nematode community in different vegetations. Hence, the nematode structure community from minimal to soil stillages have been observed and compared from seven distinct types of vegetation. This study aimed to determine the soil nematode community structure, which includes the dominance, abundance, richness, diversity, and functional role of nematodes, as well as other chemical soil properties. Vegetation type represents soil management and has an impact on the life of soil organisms such as nematodes. A total of approximately 2328 soil nematodes were found, and 18 genera were identified. The Nematode Indicator Joint Analysis (NINJA) revealed that the vegetation type, land use, and soil chemical properties influence the nematode’s abundance, dominance, and structure differently. Through those results, the authors confirmed that soil nematodes in cultivated vegetation are dominated by the trophic groups of plant-parasitic nematodes and bacterivores. Conversely, predator, omnivores, and fungivores nematodes dominate in soil with minimal tillage. Overall, this study highlights the importance of soil nematode analysis in sustainable agricultural soil ecosystems.

##plugins.themes.bootstrap3.article.details##

References
Bardgett RD, van der Putten WH. 2014. Belowground biodiversity and ecosystem functioning. Nature 515: 505-511. DOI: 10.1038/nature13855.
Bileva T, Stefanova V, Haytova D. 2014. Assessment of nematodes as bioindicators of soil health in agroecosystems. Turk J Agric Nat Sci 1: 568-573.
Bongers T, Bongers M. 1998. Functional diversity of nematodes. Appl Soil Ecol 10 (3): 239-251. DOI: 10.1016/S0929-1393(98)00123-1.
Bongers T. 1990. The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia 83: 14-19. DOI: 10.1007/BF00324627.
Boutsis G, Stamou GP, Argyropoulou MD. 2011. Short term effects of soil disinfection with metham sodium and organic alternatives on nematode communities. Commun Ecol 12 (2): 161-170. DOI: 10.1556/ComEc.12.2011.2.3.
Cao J, Pan H, Chen Z, Shang He. 2020. Bacterial, fungal, and archaeal community assembly patterns and their determining factors across three subalpine stands at different stages of natural restoration after clear-cutting. J Soils Sediments 20: 2794-2803. DOI: 10.1007/s11368-020-02608-0.
Coyne DL, Nicol JM, Claudius-Cole B. 2014. Practical Plant Nematology: A Field and Laboratory Guide. 2nd Edition. SP-IPM Secretariat, International Institute of Tropical Agriculture (IITA), Cotonou, Benin.
Devi G. 2020. Nematodes as environmental indicator. Intl J Curr Res 12 (05): 11699-11705. DOI: 10.24941/ijcr.38782.05.2020.
FAO. 2021. Standard Operating Procedure for Soil Nitrogen-Kjeldahl Method. Rome. https://www.fao.org/publications/card/en/c/CB3642EN/.
Ferris H, Bongers T, RGM de Goede. 2001. A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Appl Soil Ecol 18 (1):13-29. DOI: 10.1016/S0929-1393(01)00152-4.
Freckman DW, Ettema CH. 1993. Assessing nematode communities in agroecosystems of varying human intervention. Agric Ecosyst Environ 45: 239-261. DOI: 10.1016/0167-8809(93)90074-Y.
Garcia N, Grenier E, Buisson A, Folcher L. 2022. Diversity of plant parasitic nematodes characterized from fields of the French national monitoring programme for the Columbia root-knot nematode. PloS One 17 (3): e0265070. DOI: 10.1371/journal.pone.0265070.
Ghanem MFSA, Afzal S, Nesar H, Imran Z, Amran W. 2024. Impact of metal polluted sewage water on soil nematode assemblages in agricultural settings of Aligarh, India. Soil Ecol Lett 6: 230193. DOI: 10.1007/s42832-023-0193-3.
Griffiths BS, Bardgett. 1997. Interactions between microbe feeding invertebrates and soil microorganisms. In: van Elsas JD, Wellington E, Trevor JT (eds). Modern Soil Microbiology. Marcell Dekker Inc, New York.
Guan P, Zhang X, Yu J, Cheng Y, Li Q, Andriuzzi WS, Liang W. 2018. Soil microbial food web channels associated with biological soil crusts in desertification restoration: The carbon flow from microbes to nematodes. Soil Biol Biochem 116: 82-90. DOI: 10.1016/j.soilbio.2017.10.003.
Gutiérrez C, Fernández C, Escuer M, Campos-Herrera R, Rodríguez MEB, Carbonell G, Martín JAR. 2016. Effect of soil properties, heavy metals and emerging contaminants in the soil nematodes diversity. Environ Pollut 213: 184-194. DOI: 10.1016/j.envpol.2016.02.012.
Heyns J. 1971. A Guide to the Plant and Soil Nematodes of South Africa. A. A. Balkens, Capetown.
Ifo SA, Moutsambote JM, Koubouana F, Yoka J, Ndzai SF, Bouetou-Kadilamio LNO, Mampouya H, Jourdain C, Bocko Y, Mantota AB, Mbemba M, Mouanga-Sokath D, Odende D, Mondzali LR, Wenina YEM, Ouissika BC, Joel LJ. 2016. Tree species diversity, richness, and similarity in intact and degraded forest in the tropical rainforest of the Congo Basin: Case of the forest of Likouala in the Republic of Congo. Intl J For Res 2: 1-12. DOI: 10.1155/2016/7593681.
Indarti S, Taryono, Purnomo CW, Wulandari AS, Maharani R. 2023. Abundance and diversity of plant parasitic nematodes associated with vegetable cultivation on various types of organic fertilizers. Biodiversitas 24 (2): 1010-1016. DOI: 10.13057/biodiv/d240241.
Iqbal S, Jones MGK. 2017. Nematodes. In: Thomas B, Murray BG, Murphy DJ (eds). Encyclopedia of Applied Plant Sciences. Second Edition. Academic Press, Elsevier, Waltham, MA. DOI: 10.1016/B978-0-12-394807-6.00061-7.
Kouser N, Nisa RU, Allie KA, Shah AA. 2022. Nematode diversity and community structure assessment in different vegetations of Jammu division of J & K, India. J Appl Nat Sci 14 (1): 102-115. DOI: 10.31018/jans.v14i1.3275.
Kouser Y, Shah AA, Rasmann S. 2021. The functional role and diversity of soil nematodes are stronger at high elevation in the lesser Himalayan Mountain ranges. Ecol Evol 11: 13793-13804. DOI: 10.1002/ece3.8061.
Laasli SE, Mokrini. F, Lahlali R, Wuletaw T, Paulitz T, Dababat AA. 2022. Biodiversity of nematode communities associated with wheat (Triticum aestivum L.) in Southern Morocco and their contribution as soil health biioindicators. Diversity 14: 194. DOI: 10.3390/d14030194.
Leiva NPF, de Melo Santana-Gomes S, Zabini AV, Velázquez LMG, CR Dias-Arieira. 2020. Soil chemical properties and their relationship with phytonematode populations inside and outside patches of soybean fields. Rhizosphere 15: 100231. DOI: 10.1016/j.rhisph.2020.100231.
Li Z, Chen X, Li J, Liao X, Li D, He X, Zhang W, Zhao J. 2022. Relationships between soil nematode communities and soil quality as affected by land-use type. Forests 13: 1658. DOI: 10.3390/f13101658.
Liu T, Whalen JK, Ran W, Shen Q, Li Huixin. 2016. Bottom-up control of fertilization on soil nematode communities differs between crop management regimes. Soil Biol Biochem 96: 198-201. DOI: 10.1016/j.soilbio.2016.01.005.
Mai WF, Lyon HH. 1975. Pictorial Key to the Genera of Plant-Parasitic Nematodes, 4th ed. Cornell University Press, Ithaca, NY.
Mokuah D, H Karuri, JM Nyaga. 2023. Food web structure of nematode communities in irrigated rice fields. Heliyon 9 (2): e13183. DOI: 10.1016/j.heliyon.2023.e13183.
Neher DA, Powers TO. 2023. Nematodes. In: Goss MJ, Oliver M (eds). Encyclopedia of Soils in the Environment. (Second Edition), Academic Press: 105-111, Elsevier Waltham, MA. DOI: 10.1016/B978-0-12-822974-3.00038-0.
Nisa RU, Nisa AU, Hroobi AA, Shah AA, Tantray AY. 2022. Year-long assessment of soil nematode diversity and root inhibition-indicator Nematode genera in rice fields. Biology 11 (11): 1572. DOI: 10.3390/biology11111572.
Papatheodorou EM, Argyropoulou MD, Stamou GP. 2004. The effects of large-and small-scale differences in soil temperature and moisture on bacterial functional diversity and the community of bacterivorous nematodes. Appl Soil Ecol 25: 37-49. DOI: 10.1016/S0929-1393(03)00100-8.
Quist CW, Gort G, Mooijman P, Brus DJ, van den Elsen S, Kostenko O, Vervoort M, Bakker J, van der Putten WH, Helder J. 2019. Spatial distribution of soil nematodes relates to soil organic matter and life strategy. Soil Biol Biochem 136: 107542. DOI: 10.1016/j.soilbio.2019.107542.
Ridall A, Ingels J. 2021. Suitability of free-living marine nematodes as bioindicators: Status and future considerations. Front Mar Sci 8: 685327. DOI: 10.3389/fmars.2021.685327.
Schmidt JH, Hallmann J, Finckh MR. 2020. Bacterivorous nematodes correlate with soil fertility and improved crop production in an organixc minimum tillage system. Sustainability 12: 6730. DOI: 10.3390/su12176730.
Shokoohi E. 2023. Impact of agricultural land use on nematode diversity and soil quality in Dalmada, South Africa. Horticulturae 9: 749. DOI: 10.3390/horticulturae9070749.
Sieriebriennikov B, Ferris H, de Goede RGM. 2014. NINJA: An automated calculation system for nematode-based biological monitoring. Eur J Soil Biol 61: 90-93. DOI: 10.1016/j.ejsobi.2014.02.004.
Tsiafouli MA, Thébault E, Sgardelis SP et al. 2014. Intensive agriculture reduces soil biodiversity across Europe. Glob Chang Biol 21 (2): 973-985. DOI: 10.1111/gcb.12752.
van Bezooijen J. 2006. Methods and Techniques for Nematology. Script. http://www.nem.wur.nl/NR/rdonlyres/CC0A519F-3ADD-4FFA-B473-959062BC9C7F/47004/MethodsandTechniquesfo.
van den Hoogen J, Geisen S, Routh D et al. 2019. Soil nematode abundance and functional group composition at a global scale. Nature 572: 194-198. DOI: 10.1038/s41586-019-1418-6.
Vink SN, Bienkowski D, Roberts DM, Daniell TJ, Neilson R. 2020. Impact of land use and management practices on soil nematode communities of Machair, a low-input calcareous ecosystem of conservation importance. Sci Total Environ 738: 140164. DOI: 10.1016/j.scitotenv.2020.140164.
Walkley AJ, Black IA. 1934. Estimation of soil organic carbon by the chromic acid titration method. Soil Sci 37: 29-38. DOI: 10.1097/00010694-193401000-00003.
Wang S, Pan K, Tariq A, Zhang L, Sun X, Li Z, Sun F, Xiong Q, Song D, Olatunji OA. 2018. Combined effects of cropping types and simulated extreme precipitation on the community composition and diversity of soil macrofauna in the Eastern Qinghai-Tibet Plateau. J Soil Sediment 18: 3215-3227. DOI: 10.1007/s11368-018-1998-z.
Wright PJ, Falloon RE, Hedderley D. 2015. Different vegetable crop rotations affect soil microbial communities and soilborne diseases of potato and onion: Literature review and a long-term field evaluation. N Z J Crop Hortic Sci 43 (2): 85-110. DOI: 10.1080/01140671.2014.979839.
Xiao H, W Wang, S Xia, Z Li, J Gan, X Yang. 2021. Distributional patterns of soil nematodes in relation to environmental variables in forest ecosystems. Soil Ecol Lett 3 (2): 115-124. DOI: 10.1007/s42832-020-0069-8.
Xing W, Lu W, Niu S, Chen D, Wang J, Liu Y, Wang B, Zhang S, Li Z, Yao X, Yu Q, Tian D. 2022. Global patterns and drivers of soil nematodes in response to nitrogen enrichment. Catena 213: 106235. DOI: 10.1016/j.catena.2022.106235.
Yadav S, Patil J, Kanwar RS. 2018. The role of free living nematode population in the organic matter recycling. Intl J Curr Microbiol App Sci 7 (6): 1-9. DOI: 10.20546/ijcmas.2018.706.321.
Yang B, Banerjee S, Herzog C, Ramirez AC, Dahlin P, van der Heijden MGA. 2021. Impact of land use type and organic farming on the abundance, diversity, community composition and functional properties of soil nematode communities in vegetable farming. Agric Ecosyst Environ 318: 107488. DOI: 10.1016/j.agee.2021.107488.
Yeates GW, Barker GM, Pottinger RP. 1983. Effects of oxamyl and carbofuran on nematode populations below 10 grass cultivars. N Z J Exp Agric 11: 147-151. DOI: 10.1080/03015521.1983.10427745.
Yeates GW, Bongers T, De Goede RG, Freckman DW, Georgieva S. 1993. Feeding habits in soil nematode families and genera-An outline for soil ecologists. J Nematol 25: 315.
Zhao J, Neher D. 2013. Soil nematode genera that predict specific types of disturbance. Appl Soil Ecol 64: 135-141. DOI: 10.1016/j.apsoil.2012.11.008.

Most read articles by the same author(s)