Application of DNA barcode for the genetic analysis and identifying a May nuoc mo species in Quang Nam Province, Central Vietnam

##plugins.themes.bootstrap3.article.main##

HUYNH KIM HIEU
NGUYEN VAN MINH
NGUYEN VAN LOI
HO THANH HA

Abstract

Abstract. Hieu HK, Minh NV, Loi NV, Ha HT. 2024. Application of DNA barcode for the genetic analysis and identifying a May nuoc mo species in Quang Nam Province, Central Vietnam. Biodiversitas 25: 3299-3308. Precise identification in Calamus, the genus in the subfamily Calamoideae (Arecaceae), is challenging due to taxonomic complexities. This study aimed to discriminate and identify the 23 May nuoc mo samples collected from Quang Nam, Vietnam using four barcoding regions (rbcL, matK, psbA-trnH, and ITS nrDNA) and combined with morphological characters. DNA sequence data from those regions were analyzed using distance, tree, and similarity-based statistical methods. All region sequences presented no variable sites, except for rbcL gene region with a low rate of nucleotide differences of 0.270%. The results of the 23 May nuoc mo samples were highly similar from 99.73 to 100% to Calamus sp. N_XT142 (ON248649.1 and MK692404.1) and no gene regions were proposed as barcodes for species identification in this study. All samples shared certain morphological characteristics, including leaflets arranged regularly but with gaps; petioles with yellow spine groups; and leaf sheaths with hairs, densely arranged with brown, triangular, and flattened spines, and interspersed among many short, and black spines. Based on these results, we recommend using some other gene regions (rpoC, and rpoB)) in species identification to shed more light on these May nuoc mo samples with subsequent studies.

##plugins.themes.bootstrap3.article.details##

References
Ahmadi H, Solouki M, Fazeli-Nasab B, Heidari F& Sayyed RZ. 2022. Internal Transcribed Spacer (ITS) regions: A powerful tool for analysis of the diversity of wheat genotypes. Indian Journal of Experimental Biology 60: 137-143.
Alam A, Chadha NK, Kumar AP, Chakraborty SK, Joshi KD, Sawant PB, Das SCS, Kumar J and Kumar T. 2020. DNA Barcoding and Biometric Investigation on the Invasive Oreochromis niloticus (Linnaeus, 1758) from the River Yamuna of Uttar Pradesh. Indian Journal of Animal Research 54: 856-863. DOI: 10.18805/ijar.B-3833.
Ansari S, Solouki M, Fakheri B, Fazeli-Nasab B & Mahdinezhad N. 2018. Assessment of molecular diversity of Internal transcribed spacer region in some lines and landrace of persian clover (Trifolium resupinatum L). Potravinarstvo Slovak J Food Sci, 12: 657. DOI: https://doi.org/10.5219/960.
Antil S, Abraham JS, Sripoorna S, Maurya S, Dagar J, Makhija S, Bhagat P, Gupta R, Sood U, Lal R, Toteja R. 2023. DNA barcoding, an effective tool for species identification: a review. Molecular Biology Reports 50: 761–775. DOI:: https://doi.org/10.1007/s11033-022-08015-7.
Bieniek W, Mizianty M, Szklarczyk M. 2015. Sequence variation at the three chloroplast loci (matK, rbcL, trnH-psbA) in the Triticeae tribe (Poaceae): comments on the relationships and utility in DNA barcoding of selected species. Plant Systematics and Evolution 301: 1275-1286. DOI: 10.1007/s00606-014-1138-1
Bolson M, De Camargo SE, Brotto MA, Silva-Pereira V. 2015. ITS and trnH-psbA as Efficient DNA Barcodes to Identify Threatened Commercial Woody Angiosperms from Southern Brazilian Atlantic Rainforests. PLoS One 10 (12): e0143049. DOI: https://doi.org/10.1371/journal.pone.0143049
CBOL Plant Working Group. 2009. A DNA barcode for land plants. Proceedings of the National Academy of Sciences of the USA 106: 12794-12797. DOI: 10.1073/pnas.0905845106.
Dong W, Liu J, Yu J, Wang L, Zhou S. 2012. Highly Variable Chloroplast Markers for Evaluating Plant Phylogeny at Low Taxonomic Levels and for DNA Barcoding. PLoS ONE 7 (4): e35071. DOI:10.1371/journal.pone.0035071.
Dung NQ, Hai TN, Henderson A, Phuong NTB. 2021. Proposal on conservation and development of high value rattan species in Vietnam. Journal of Forestry Science and Technology 5: 67-77.
Fu YX, and Li WH. 1993. Statistical tests of neutrality of mutations. Genetics 133: 693-709. DOI: 10.1093/genetics/133.3.693.
Fu YX. 1997. Statistical testsof neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915-925. DOI: 10.1093/genetics/147.2.915.
Gamache J, Sun G. 2015. Phylogenetic analysis of the genus Pseudoroegneria and the Triticeae tribe using the rbcL gene. Biochemical Systematics and Ecology 62: 73-81. DOI: https://doi.org/10.1016/j.bse.2015.07.038.
Guo M, Yuan C, Tao L, Cai Y, Zhang W. 2022. Life barcoded by DNA barcodes. Conservation Genetics Resources 14: 351–365. DOI: https://doi.org/10.1007/s12686-022-01291-2.
Ho VT, Tran TKP, Vu TTT and Widiarsih S. 2021. Comparison of matK and rbcL DNA barcodes for genetic classification of jewel orchid accessions in Vietnam. Journal of Genetic Engineering and Biotechnology 19 (1): 93. DOI: https://doi.org/10.1186/s43141-021-00188-1.
Hunt HV, Badakshi F, Romanova O, Howe CJ, Jones MK, HeslopHarrison JSP. 2014. Reticulate evolution in Panicum (Poaceae): the origin of tetraploid broomcorn millet, P. miliaceum. Journal of Experimental Biology 65(12): 3165-3175. DOI: 10.1093/jxb/eru161.Epub 2014 Apr 10.
Kekkonen M, and Hebert PDN. 2014. DNA barcode-based delineation of putative species: Efficient start for taxonomic workflows. Mol. Ecol. Resour. 14: 706-715. DOI: 10.1111/1755-0998.12233.
Kress WJ, García-Robledo C, Uriarte M, and Erickson DL. 2015. DNA barcodes for ecology, evolution, and conservation. Trends in Ecology & Evolution 30: 25-35. DOI: 10.1016/j.tree.2014.10.008.
Kumar S, Stecher G, and Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870-1874. DOI: 10.1093/molbev/msw054. Epub 2016 Mar 22.
Loi NV, Ha HT, Thanh DV, Hung LT. 2018. Assessing suitability of two rattan species (Daemonorops poilanei J.Dransf. and D. jenkinsiana Mart.) in natural forests in Nam Dong district, Thua Thien Hue province. Hue University Journal of Science: Agriculture and Rural Development 127 (3B): 151-161. DOI: 10.26459/hueuni-jard.v127i3B.4863.
Long DT, Hong HTK, Tram LLT, Trang NTQ. 2021. Research on Phylogenetic Relationship of Lotus Populations Collected in Thua Thien Hue Province, Vietnam based on the Chloroplast Genome by DNA Barcode. Indian Journal of Agricultural Research 56 (3): 249-254. DOI: 10.18805/IJARe.A-646.
Long DT, Hong HTK, Tram LLT, Trang QTQ. 2021. Evaluation of Genetic Diversity by DNA Barcoding of Local Lotus Populations from Thua Thien Hue Province. Indian Journal of Agricultural Research 55 (2): 121-128. DOI:. 10.18805/IJARe.A-564.
Lopez-Vaamonde C, Kirichenko N, Cama A, Doorenweerd C, Godfray HCJ, Guiguet A, Gomboc S, Huemer P, Landry J-F, Lašt ?uvka A, Lašt ?uvka Z, Lee KM, Lees DC, Mutanen M, van Nieukerken EJ, Segerer AH, Triberti P, Wieser C and Rougerie R. 2021. Evaluating DNA Barcoding for Species Identification and Discovery in European Gracillariid Moths. Front. Ecol. Evol. 9: 626752. DOI: 10.3389/fevo.2021.626752.
Mampang RT, Auxtero KCA., Caldito CJC, Abanilla JM, Santos GAG and Caipang CMA. 2023. DNA Barcoding and Its Applications: A Review. Uttar Pradesh Journal of Zoology 44 (20): 69-78. DOI:: 10.56557/UPJOZ/2023/v44i203646.
Meher PJ, Sahu TK, Rao AR. 2016. Identification of species based on DNA barcode using k-mer feature vector and Random forest classifier. Gene 592 (2): 316-324. DOI: https://doi.org/10.1016/j.gene.2016.07.010.
Mishra P, Kumar A, Nagireddy A, Mani DN, Shukla AK, Tiwari R, et al. 2015. DNA barcoding: an efficient tool to overcome authentication challenges in the herbal market. Plant Biotechnol. J. 14: 8-21. DOI: 10.1111/pbi.12419.
Ojeda DI, Santos-Guerra A, Oliva-Tejera F, Jaen-Molina R, Caujapé-Castells J, Marrero-Rodríguez A, Cronk Q. 2014. DNA barcodes successfully identified Macaronesian Lotus (Leguminosae) species within early diverged lineages of Cape Verde and mainland Africa. AoB PLANTS 6:plu050; DOI:10.1093/aobpla/plu050.
Peter CM, and Henderson A, with contributions from Dung NQ and Ledecq T. 2014. Systematics, Ecology and Management of Rattans in Cambodia, Laos and Vietnam. Agricultural Publishing House.
Rai P.K and Singh JS. 2020. Invasive alien plant species: Their impact on environment, ecosystem services and human health. Ecological Indicators 111: 106021. DOI: https://doi.org/10.1016/j.ecolind.2019.106020.
Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A. 2017. DNAsp 6: DNA sequence polymorphism analysis of large Datasets. Molecular Biology and Evolution 34: 3299-3302. DOI: https://doi.org/10.1093/molbev/msx248.
Su X, Liu YP, Chen Z, Chen KL. 2016. Evaluation of candidate barcoding markers in Orinus (Poaceae). Genetic Molecular Research 15 (2): gmr.15027714. DOI: 10.4238/gmr.15027714.
Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585-595. DOI: 10.1093/genetics/123.3.585.
Tamura K, and Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10: 512-526. DOI: 10.1093/oxfordjournals.molbev.a040023.
Theodoridis S, Stefanaki A, Tezcan M, Aki C, Kokkini S, Vlachonasios KE. 2012. DNA barcoding in native plants of the Labiatae (Lamiaceae) family from Chios Island (Greece) and the adjacent Çesme-Karaburun Peninsula (Turkey). Molecular Ecology Resources 12: 620-633. DOI: 10.1111/j.1755-0998.2012.03129.x.Epub 2012 Mar 7.
Trias-Blasi A, and Vorontsova M. 2015. Botany: plant identification is key to conservation. Nature 521: 161. DOI:: 10.1038/521161c.
Vaze A, Nerkar G, Pagariya M, Devarumath RM. and Theertha PD. 2010. Isolation and PCR amplification of genomic DNA from dry leaf samples of Sugarcane. International Journal of Pharma and Bio Sciences V1 (2): 1-6.