Metabolite profiling, in vitro antioxidant and a-glucosidase inhibitory properties of Timonius ternifolius leaves

##plugins.themes.bootstrap3.article.main##

MAINGELLINE B. VIVIT
RAMJEE G. BATUYONG
ALONDRA FAE T. DAMIAN
CECILE A. GAOAT
KRISTIAN GAY D. BELTRAN
ANABELLE B. ALEJO
MICHAEL A. CALARAMO
FRANKLIN V. IBANA
MAE ANN R. BATUYONG

Abstract

Abstract. Vivit MB, Batuyong RG, Damian AFT, Gaoat CA, Beltran KGD, Alejo AB, Calaramo MA, Ibana FV, Batuyong MAR. 2024. Metabolite profiling, in vitro antioxidant and a-glucosidase inhibitory properties of Timonius ternifolius leaves. Biodiversitas 25: 3027-3034. The genus Timonius (Rubiaceae) possesses different pharmacological properties. One understudied endemic species under this genus from the Philippines is the Timonius ternifolius (Bartl. ex DC.) Fern.-Vill. Hence, this study investigates the physicochemical properties and phytochemical constituents of the leaf ethanolic extract (EE) and subjected to solvent partitioning to yield the following subfractions: hexane (HE), ethyl acetate (EA), and methanol (ME) extracts, which were utilized for the in vitro antioxidant, a-glucosidase and a-amylase assays. Quantitative tests of T. ternifolius leaves revealed the following physicochemical properties: herbal tea-like odor, fibrous and fluffy appearance, 50.07% moisture content, 3.10% total ash content, and a slightly acidic pH value of 5.13. The liquid chromatography-mass spectrometry (LC-MS) analysis has identified eight putative compounds namely glabrolide, aloinoside B, 2-benzyl octanal, geumonoid, (±) gomisin M1, 25-O-Acetyl-7,8-didehydrocimigenol-3-O-a-D-xylopyranoside, lucialdehyde B, and kadsuric acid. The extracts' concentrations of flavonoids, phenols, and terpenoids were 1.23±0.19 mg QE/g, 20.77±0.77 mg GAE/g, and 6.07±0.53 mg/g, respectively. Antioxidant profiling among the subfractions showed EE exhibiting the highest at 59.15±2.08 µg/mL (IC50 value). Moreover, significant a-glucosidase inhibition was noted in the EE extract at 99.74%, EA at 99.71%, and ME at 99.45%. The results showed that T. ternifolius leaves are a promising lead source of pharmacologically active compounds with antioxidant and antidiabetic activities, expanding information on plant-derived alternative treatments and developing medicinal products.

##plugins.themes.bootstrap3.article.details##

References
AAT Bioquest, Inc. 2023.Quest Graph™ IC50 Calculator. AAT Bioquest. https://www.aatbio.com/tools/ic50-calculator.
Alejandro GJD. 2007. The current status of the Philippine Rubiaceae. Philipp J Syst Biol 1 (1): 47-60. DOI: 10.3860/pjsb.v1i1.908.
Alejandro GJD, Meve U, Uy M, Thiv M, Liede S. 2010. Molecular support of the classification of Greeniopsis Merr. in Aleisanthieae (Rubiaceae), with a revision of the genus. Taxon 59 (5): 1547-1564. DOI: 10.2307/20774048.
Alejandro GJD, Meve U, Mouly A, Thiv M, Liede S. 2011. Molecular phylogeny and taxonomic revision of the Philippine endemic Villaria Rolfe (Rubiaceae). Plant Syst Evol 296 (1): 1-20. DOI: 10.1007/s00606-011-0472-9.
Arif N, Subhani A, Hussain W, & Rasool N.2020. In silico inhibition of BACE-1 by selective phytochemicals as novel potential inhibitors: molecular docking and DFT studies. Current Drug Discovery Technologies, 17(3), 397–411. DOI: 10.2174/1570163816666190214161825. Abstract Retrieved from https://www.eurekaselect.com/article/96664.
Arriola AH, Paraguison L, Alejandro GJD. 2016. Kanapia (Vanguerieae): a new endemic genus of Philippine Rubiaceae. Plant Syst Evol 302 (7): 911-920. DOI: 10.1007/s00606 016-1307-5.
Aureada MK, Duran DJ, Falacata SR, Pornillos KM, Villanueva MA, Ordas JAS, & Tan MA. 2023. Corelation of total phenolic and flavonoid contents on the antioxidant activity of Psychortia gitigensis and Psychotria pilosella. Journal ofPhytology 15: 110-115. doi: 10.25081/jp.2023.v15.8545
Batuyong MA, Calaramo MA, & Alejandro GJD. 2020. A checklist and conservation status of vascular plants in the Limestone forest of Metropolitan Ilocos Norte Watershed Forest Reserve, Northwestern Luzon, Philippines. Biodiversitas 21: 3969–3981. DOI: 10.13057/biodiv/d210907
Batuyong MA, Calaramo MA, & Alejandro GJD. 2021. Diversity of Rubiaceae in Ilocos Norte, northwestern Luzon, Philippines: A preliminary checklist, their distribution, and conservation status. The Philippine Journal of Science, 150(S1). https://doi.org/10.56899/150.s1.37.
Bremer B, Eriksson T. 2009. Time Tree of Rubiaceae Phylogeny and dating the family, subfamilies, and tribes. Intl J Plant Sci 170 (6): 766-793. DOI: 10.1086/599077.
Castro SG, Cid JE, Ibanez, WA, Alejandro, GJD, & Tan MA. 2016. GC-MS metabolite profiling of the hexane extract and antimicrobial characterization of the Philippine endemic Rubiaceae species Uncaria cordata var. circa, Psychotria luzoniensis, and Psydrax puberula.Acta Manilana, 64, 9-16.
Chen M, Kilgore N, Lee KH, & Chen DF. 2006.Rubrisandrins A and B, Lignans and Related Anti-HIV Compounds from Schisandra rubriflora. Journal of Natural Products, 69(12), 1697–1701. https://doi.org/10.1021/np060239e.
Chung LY,Soo WK, Chan KY, Mustaf MR, Goh SH, & Imiyabir Z. (2009). Lipoxygenase inhibiting activity of some Malaysian plants. Pharmaceutical Biology, 47(12), 1142–1148. https://doi.org/10.3109/13880200903008724.
Davis A, Bridson D, Ruhsam M, Moat J, Brummit N. 2009. A global assessment of distribution, diversity, endemism, and taxonomic effort in the Rubiaceae. Ann Missouri Bot Gard 96 (1): 68-78. DOI: 10.3417/2006205.De Paulo Farias, D., De Araújo, F. F., Neri-Numa, I. A., & Pastore, G. M. (2021). Antidiabetic potential of dietary polyphenols: A mechanistic review. Food Research International, 145, 110383. https://doi.org/10.1016/j.foodres.2021.110383.
Dias MC, Pinto D, & Silva, AMS. 2021. Plant flavonoids: chemical characteristics and biological activity. Molecules, 26(17), 5377. https://doi.org/10.3390/molecules26175377.
Einbond LS,, Ye W, He K, Wu H, Cruz E, Roller M & Kronenberg F. 2008. Growth inhibitory activity of extracts and compounds from Cimicifuga species on human breast cancer cells. Phytomedicine, 15(6–7), 504–511. https://doi.org/10.1016/j.phymed.2007.09.017.
Gao J, Min B, Ahn E, Nakamura N, Lee H, & Hattori M. 2002. New Triterpene Aldehydes, Lucialdehydes A-C, from Ganoderma lucidum and Their Cytotoxicity against Murine and Human Tumor Cells. Chemical & Pharmaceutical Bulletin, 50(6), 837–840. https://doi.org/10.1248/cpb.50.837.
Gao J, Zhang G, Dai R, & Bi K. 2005. Isolation of aloinoside B and metabolism by rat intestinal bacteria. Pharmaceutical Biology, 42(8), 581–587. https://doi.org/10.1080/13880200490902446.
Gaol AYL, Ilyas S, Hutahaean S, & Sipahutar H. 2021. Antidiabetic Activity and Immunostimulant Potential of Bosibosi (Timonius flavescens (Jacq) Baker) Leaves Ethanol Extract in Alloxan-Induced Diabetic Rats. Journal of Physics: Conference Series, 1819(1), 012071. https://doi.org/10.1088/1742-6596/1819/1/012071.
Gong L, Feng D, Wang T, Ren Y, & Liu Y. 2020. Inhibitors of ??amylase and ??glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia. Food Science and Nutrition, 8(12), 6320–6337. https://doi.org/10.1002/fsn3.1987.
Graßmann J. 2005. Terpenoids as plant antioxidants. In Vitamins and hormones (pp. 505–535). https://doi.org/10.1016/s0083-6729(05)72015-x.
Gutiérrez-Del-Río I, López-Ibáñez S, Magadán?Corpas P, Fernández?Calleja L, Pérez?Valero Á, Tuñón-Granda M, Miguélez EM, & Villar CJ. 2021. Terpenoids and polyphenols as natural antioxidant agents in food preservation. Antioxidants, 10(8), 1264. https://doi.org/10.3390/antiox10081264.
Hait M. 2021. Physicochemical analysis of herbal drugs. Dr. Chhavi Sinngla Ed., Recent advances in pharmaceutical sciences (pp. 29-53). In AkiNik Publications. https://doi.org/10.22271/ed.book.1318.
Kadsuric acid. (2024). Biosynth. MCA39388 | 62393-88-8 | Kadsuric acid | Biosynth.
La J, Kim M, & Lee J. 2021. Evaluation of solvent effects on the DPPH reactivity for determining the antioxidant activity in oil matrix. Food Science and Biotechnology, 30(3), 367–375. https://doi.org/10.1007/s10068-020-00874-9.
Lattanzio V. 2013. Phenolic Compounds: Introduction. Kishan Gopal Ramawat and Jean-Michel Merillon Ed., Natural products (pp.1543-1580). In Springer eBooks. https://doi.org/10.1007/978-3-642-22144-6.
Liu L, Yu Z, Chen J, Liu BO, Wu C, Li Y, Xu J, & Li P. 2023. Lucialdehyde B suppresses proliferation and induces mitochondria-dependent apoptosis in nasopharyngeal carcinoma CNE2 cells. Pharmaceutical Biology, 61(1), 918–926. https://doi.org/10.1080/13880209.2023.2220754.
Mahboubi M, Kazempour N, & Nazar ARB. 2013. Total phenolic, total flavonoids, antioxidant and antimicrobial activities of Scrophularia striata boiss extracts. Jundishapur Journal of Natural Pharmaceutical Products, 8(1), 15–19. https://doi.org/10.17795/jjnpp-7621.
Martin D, & Núñez CV. 2015. Secondary Metabolites from Rubiaceae Species. Molecules, 20(7), 13422–13495. https://doi.org/10.3390/molecules200713422.
Niedermeyer THJ, Lindequist U, Mentel R, Gördes D, Schmidt E, Thurow K, & Lalk M. 2005. Antiviral Terpenoid Constituents of Ganoderma pfeifferi. Journal of Natural Products, 68(12), 1728–1731. https://doi.org/10.1021/np0501886.
Olivar JE, Sy KA, Villanuaeva CV, Alejandro GJD, Tan MA.2017. Alkaloids as chemotaxonomic markers from the Philippine endemic Uncaria perrottetii and Uncaria lanosa f. philippinensis. Journal of King Saud University - Science 30(2). DOI:10.1016/j.jksus.2017.12.008
Oliveira J, Mateus N, & de Freitas V. 2013. Flavonols: Catechins and Proanthocyanidins. Kishan Gopal Ramawat and Jean-Michel Merillon Ed., Natural products (pp.1543-1580). In Springer eBooks. https://doi.org/10.1007/978-3-642-22144-6.
Oncho DA, Ejigu MC, & Urgessa OE. 2021. Phytochemical constituent and antimicrobial properties of guava extracts of east Hararghe of Oromia, Ethiopia. Clinical Phytoscience, 7(1). https://doi.org/10.1186/s40816-021-00268-2.
Praptiwi DS, Qodrie ERP,& Sahroni D. 2021. Antibacterial activity, antioxidant potential, total phenolic and flavonoids of three plant species of Rubiaceae from Banggai Island, Indonesia. Biodiversitas, 22(5), 2773-2778. DOI: 10.13057/biodiv/d220540.
Ramil RJD, Ramil MDI, Konno T, Murata T, Kobayashi K , Buyankhishig B, Agrupis SC, & Sasaki K. 2021. A new hexenoic acid glycoside with cutotoxic activity from the leaves of Psychotria luzoniensis. Natural Product Rsearch, 35 (23) , 5036-5041. https://doi.org/10.1080/14786419.2020.1765345
Sipahutar H, Gaol AYDL, & Prasetya E. 2023. Antidiabetic Potentials of Ethanol Extract of Timonius flavescens (Jacq.) Baker Leaf. Tropical Journal of Natural Product Research, 7(1):2115-2121. ISSN 2616-0692.
Santos-Sánchez NF, Salas-Coronado R, Villanueva-Cañongo C, & Hernández-Carlos B. 2019. Antioxidant compounds and their antioxidant mechanism. In IntechOpen eBooks. https://doi.org/10.5772/intechopen.85270.
Sun H, Huang M, Yao N, Hu J, Li Y, Li-Ping C, Hu N, Ye W, Tai W, Zhang D, & Chen S. 2017. The cycloartane triterpenoid ADCX impairs autophagic degradation through Akt overactivation and promotes apoptotic cell death in multidrug-resistant HepG2/ADM cells. Biochemical Pharmacology, 146, 87–100. https://doi.org/10.1016/j.bcp.2017.10.012.
Tan MA & An SS. 2020. Neuroprotective potential of the oxindole alkaloids isomitraphylline and mitraphylline in human neuroblastoma SH-SY5Y cells. 3 Biotech 10(12). DOI:10.1007/s13205-020-02535-4
Tan MAN & Ishikawa H. 2023. Constituents of Uncaria lanosa f. philippinensis and their anti-amyloidogenic activity Constituents of Uncaria lanosa f. philippinensis and their anti-amyloidogenic activity. Natural Products Research. DOI:10.1080/14786419.2023.2294481
World Health Organization. 2011. Quality control methods for herbal materials. Geneva: WHO Press.
Xu H, Ming D, Dong H, & But PP. 2000. A New Anti-HIV Triterpene from Geum japonicum. Chemical & Pharmaceutical Bulletin, 48(9), 1367–1369. https://doi.org/10.1248/cpb.48.1367.