Estimating oil palm (Elaeis guineensis) production potential using Unmanned Aerial Vehicle

##plugins.themes.bootstrap3.article.main##

CHARLOQ
ACHMAD SIDDIK THOHA
ABU YAZID
AGUNG MUAMMAR SIDIQ
OPPIE APRILIA LUBIS

Abstract

Abstract. Charloq, Thoha AS, Yazid A, Sidiq AM, Lubis OA. 2024. Estimating oil palm (Elaeis guineensis) production potential using Unmanned Aerial Vehicle. Biodiversitas 25: 2981-2989. The vast expanse of oil palm (Elaeis guineensis Jacq.) plantations utilized Unmanned Aerial Vehicle (UAV) technology, identified as a suitable tool for mapping the health condition and production potential of oil palm plants. A plant census was conducted to confirm the correct number of plants, utilizing GPS to record each plant's coordinates, assess its health status, and estimate its production potential. This study aimed to estimate oil palm production potential with maximum accuracy using drone technology over a 22.23-hectare plantation. The research method involved drone based mapping of plant numbers and health, thereby estimating the potential production of oil palm. Orthomosaic data processed using Oil Palm Analysis (OPA) software were analyzed and compared with field survey data (plant census) through the Student t test with ? = 5%. In conclusion, from the study of drone/UAV technology based estimation of oil palm (E. guineensis) production potential in the field on an area of 22.23 ha at PT. Eastern Indonesia Bukit Maradja Estate, North Sumatra Province, Indonesia, it can be concluded that the use of drone technology for oil palm production estimation through OPA is highly effective, with no significant discrepancies between drone results and traditional field census methods. This consistency confirms that UAVs are a reliable tool for assessing the production potential of oil palm plantations.

##plugins.themes.bootstrap3.article.details##

References
Abubakar A, Ishak MY, Bakar AA, Uddin MK. 2022. Ganoderma boninense basal stem rot induced by climate change and its effect on oil palm. Environ Sustain 5: 289-303. DOI: 10.1007/s42398-022-00244-7.
Ahmadi P, Mansor S, Farjad B, Ghaderpour E. 2022. Unmanned Aerial Vehicle (UAV)-Based remote sensing for early-stage detection of Ganoderma. Remote Sens 14 (5): 1239. DOI: 10.3390/rs14051239.
Avtar R, Suab SA, Syukur MS, Korom A, Umarhadi DA, Yunus AP. 2020. Assessing the influence of UAV altitude on extracted biophysical parameters of young oil palm. Remote Sens 12 (18): 3030. DOI: 10.3390/rs12183030.
Bhuvaneshwari S, Hettiarachchi H, Meegoda JN. 2019. Crop residue burning in India: Policy challenges and potential solutions. Intl J Environ Res Public Health 16 (5): 832. DOI: 10.3390/ijerph16050832.
Biruntha M, Karmegam N, Archana J, Selvi BK, Paul JAJ, Balamuralikrishnan B, Chang SW, Ravindran B. 2020. Vermiconversion of biowastes with low-to-high C/N ratio into value added vermicompost. Bioresour Technol 297: 122398. DOI: 10.1016/j.biortech.2019.122398.
Charloq, Simbolon PE, Vinolina NS. 2023a. Amelioration of peat soil for changes in C/N levels through palm oil empty bunch ash utilization in Mucuna bracteata plantatione. IOP Conf Ser: Earth Environ Sci 1188: 012042. DOI: 10.1088/1755-1315/1188/1/012042.
Charloq, Thoha AS, Putra, DY, Muammar A. 2023b. Unmanned Aerial Vehicles (UAV) utilization for mapping the health of oil palm plants (Elaeis guineensis Jacq.). IOP Conf Ser: Earth Environ Sci 1241: 012072. DOI: 10.1088/1755-1315/1241/1/012072.
Chowdhury PN, Shivakumara P, Nandanwar L, Samiron F, Pal U, Lu T. 2022. Oil palm tree counting in drone images. Pattern Recognit Lett 153: 1-9. DOI: 10.1016/j.patrec.2021.11.016.
Corley RHV, Tinker PB. 2008. The Oil Palm. John Wiley & Sons, US. DOI: 10.1002/9781118953297.ch13.
Daliesta NFT, Muhammad AS, Gatot P. 2020. Studi peremajaan tanaman kelapa sawit di areal lahan tanah mineral dan lahan gambut. Jurnal Teknik Pertanian Lampung 9 (3): 201-212. DOI: 10.23960/Jtep-L.V9i3.201-212. [Indonesian]
Darlis D, Jalloh MB, Chin CFS, Basri NKM, Besar NA, Ahmad K, Rakib MRM. 2023. Exploring the potential of Bornean polypore fungi as biological control agents against pathogenic Ganoderma boninense causing basal stem rot in oil palm. Sci Rep 13: 10316. DOI: 10.1038/s41598-023-37507-0.
Eris DD, Widiastuti H, Suharyanto, Panjaitan K, Taniwiryono D. 2022. Ganoderma stem rot disease mapping and the chemical and biological characteristics of endemic lands. IOP Conf Ser: Earth Environ Sci 974: 012049. DOI: 10.1088/1755-1315/974/1/012049.
Fawcett D, Azlan B, Hill TC, Kho LK, Bennie J, Anderson K. 2019. Unmanned Aerial Vehicle (UAV) derived structure-from-motion photogrammetry point clouds for oil palm (Elaeis guineensis Jacq.) canopy segmentation and height estimation. Intl J Remote Sens 40 (19): 7538-7560. DOI: 10.1080/01431161.2019.1591651.
Findlay SEG. 2021. Organic matter decomposition. In: Weathers KC, Strayer DL, Likens GE (eds). Fundamentals of Ecosystem Science, Second Edition. Academic Press, US. DOI: 10.1016/B978-0-12-812762-9.00004-6.
Fosch A, Ferraz de Arruda G, Aleta A, Descals A, Gaveau D, Morgans C, Santika T, Struebig MJ, Meijaard E, Moreno Y, 2023. Replanting unproductive palm oil with smallholder plantations can help achieve Sustainable Development Goals in Sumatra, Indonesia. Commun Earth Environ 4: 378. DOI: 10.1038/s43247-023-01037-4.
García-Palacios P, Tanya Handa I, Hättenschwiler S. 2021. Plant litter decomposition in terrestrial ecosystems compared to streams. In: Swan CM, Boyero L, Canhoto C (eds). The Ecology of Plant Litter Decomposition in Stream Ecosystems. Springer, Cham. DOI: 10.1007/978-3-030-72854-0_6.
Gerke J. 2022. The central role of soil organic matter in soil fertility and carbon storage. Soil Syst 6 (2): 33. DOI: 10.3390/soilsystems6020033.
Gibril MBA, Shafri HZM, Shanableh A, Al-Ruzouq R, Wayayok A, Hashim SJ. 2021. Deep convolutional neural network for large-scale date palm tree mapping from UAV-based images. Remote Sens 13 (14): 2787. DOI: 10.3390/rs13142787.
Hamzah A, Saputra R, Puspita F, Nasrul B, Irfandri, Depari NS. 2021. Ganoderma diversity from smallholder oil palm plantations in peatlands of Kampar District, Indonesia based on mycelia morphology and somatic incompatibility. Biodiversitas 22 (1): 16-22. DOI: 10.13057/biodiv/d220103.
Hao X, Han X, Wang S, Li L-J. 2022. Dynamics and composition of soil organic carbon in response to 15 years of straw return in a Mollisol. Soil Till Res 215: 105221. DOI: 10.1016/j.still.2021.105221.
Ho C-L, Tan Y-C, Yeoh K-A, Lee W-K, Ghazali A-K, Yee W-Y, Hoh C-C. 2019. Leaf transcriptome of oil palm (Elaeis guineensis Jacq.) infected by Ganoderma boninense. Trees 33: 943-950. DOI: 10.1007/s00468-019-01830-9.
Husin NA, Abd Aziz MH, Khairunniza-Bejo S. 2023. Detection and classification of basal stem rot disease in oil palm using machine learning techniques: A mini review. Adv Agric Food Res J 4 (2): a0000365. DOI: 10.36877/aafrj.a0000365.
Husin NA, Bejo SK, Abdullah AF, Kassim MS, Ahmad D. 2021. Relationship of oil palm crown features extracted using terrestrial laser scanning for basal stem rot disease classification. Basrah J Agric Sci 34: 1-10. DOI: 10.37077/25200860.2021.34.sp1.1.
Jazuli NA, Kamu A, Chong KP, Gabda D, Hassan A, Abu Seman I, Ho CM. 2022. A review of factors affecting Ganoderma basal stem rot disease progress in palm oil. Plants 11 (19): 2462. DOI: 10.3390/plants11192462.
Kalamkar RB, Ahire MC, Ghadge PA, Dhenge SA, Anarase MS. 2020. Drone and its Applications in Agriculture. Intl J Curr Microbiol Appl Sci 9 (6): 3022-3026. DOI: 10.20546/ijcmas.2020.906.363.
Kent OW, Chun TW, Choo TL, Kin LW. 2023. Early symptom detection of basal stem rot disease in oil palm plant using a deep learning approach on UAV images. Comput Electron Agric 213: 108192. DOI: 10.1016/j.compag.2023.108192.
Khokthong W, Zemp DC, Irawan B, Sundawati L, Kreft H, Hölscher D. 2019. Drone-based assessment of canopy cover for analyzing tree mortality in an oil palm agroforest. Front For Glob Change 2: 12. DOI: 10.3389/ffgc.2019.00012.
Khoo YW, Chong KP. 2023. Ganoderma boninense: General characteristics of pathogenicity and methods of control. Front Plant Sci 14: 1156869. DOI: 10.3389/fpls.2023.1156869.
Koishi A, Bragazza L, Maltas A, Guillaume T, Sinaj S. 2020. Long-term effects of organic amendments on soil organic matter quantity and quality in conventional cropping systems in Switzerland. Agronomy 10 (12): 1977. DOI: 10.3390/agronomy10121977.
Kurihara J, Koo V-C, Guey CW, Lee YP, Abidin H. 2022. Early detection of basal stem rot disease in oil palm tree using unmanned aerial vehicle-based hyperspectral imaging. Remote Sens 14 (3): 799. DOI: 10.3390/rs14030799.
Lehmann J, Joseph S. 2015. Biochar for Environmental Management: Science, Technology and Implementation. Second Edition. Routledge, UK. DOI: 10.4324/9780203762264.
Meivel S, Maheswari S. 2021. Remote sensing analysis of agricultural drone. J Indian Soc Remote Sens 49: 689-701. DOI: 10.1007/s12524-020-01244-y.
Muna MS, Nugroho AP, Syarovy M, Wiratmoko A, Sutiarso L. 2022. Development of automatic counting system for palm oil tree based on Remote Sensing Tourism. In: International Conference on Sustainable Environment, Agriculture and Tourism (ICOSEAT 2022). Tanjung Pesona Beach Resort, Sungailiat, Bangka, 21-23 July 2022. DOI: 10.2991/978-94-6463-086-2_68.
Nazir MNMM, Terhem R, Norhisham AR, Razali SM, Meder R. 2021. Early monitoring of health status of plantation-grown Eucalyptus pellita at large spatial scale via visible spectrum imaging of canopy foliage using unmanned aerial vehicles. Forests 12 (10): 1393. DOI: 10.3390/f12101393.
Neupane K, Baysal-Gurel F. 2021. Automatic identification and monitoring of plant diseases using unmanned aerial vehicles: A review. Remote Sens 13 (19): 3841. DOI: 10.3390/rs13193841.
Nguyen V-T, Le T-H, Bui X-T, Nguyen T-N, Vo T-D-H, Lin C, Vu T-M-H, Nguyen H-H, Nguyen D-D, Senoro DB, Dang B-T. 2020. Effects of C/N ratios and turning frequencies on the composting process of food waste and dry leaves. Bioresour Technol Rep 11: 100527. DOI: 10.1016/j.biteb.2020.100527.
Pathak H, Kumar G, Mohapatra SD, Gaikwad BB, Rane J. 2020. Use of drones in agriculture: Potentials, Problems and Policy Needs. ICAR-National Institute of Abiotic Stress Management 300: 4-15. ICAR-National Institute of Abiotic Stress Management.
PT. Eastern Indonesia Bukit Maradja Estate. 2021. Bukit Maradja Palm Oil Mill Location of Certification Unit: Nagori Marihat Bukit Village, Gunung Malela Sub-district, Simalungun District, Sumatera Utara Province.
Pulingam T, Lakshmanan M, Chuah J-A, Surendran A, Zainab-L I, Foroozandeh P, Uke A, Kosugi A, Sudesh K. 2022. Oil palm trunk waste: Environmental impacts and management strategies. Ind Crops Prod 189: 115827. DOI: 10.1016/j.indcrop.2022.115827.
Putra YC, Wijayanto AW, Chulafak GA. 2022. Oil palm plant detection and counting on Microsoft Bing Maps Very High Resolution (VHR) satellite imagery and Unmanned Aerial Vehicles (UAV) data using image processing thresholding approach. Ecol Inform 72: 101878. DOI: 10.1016/j.ecoinf.2022.101878.
Rafezall CM, Darwin N, Ariff MFM, Majid Z. 2020. Detection of palm oil health through multispectral UAV platform. In: 2020 IEEE 10th International Conference on System Engineering and Technology (ICSET). Shah Alam, Malaysia. DOI: 10.1109/ICSET51301.2020.9265374.
Rashad M, Hafez M, Popov AI. 2022. Humic substances composition and properties as an environmentally sustainable system: A review and way forward to soil conservation. J Plant Nutr 45 (7): 1072-1122. DOI: 10.1080/01904167.2021.2005801.
Rashid M, Bari BS, Yusup YB, Kamaruddin MA, Khan N. 2021. A comprehensive review of crop yield prediction using machine learning approaches with special emphasis on palm oil yield prediction. IEEE access 9: 63406-63439. DOI: 10.1109/ACCESS.2021.3075159.
Rebitanim NA, Hanafi MM, Idris AS, Abdullah SNA, Mohidin H, Rebitanim NZ. 2020. GanoCare® improves oil palm growth and resistance against Ganoderma basal stem rot disease in nursery and field trials. Biomed Res Intl 2020: 3063710. DOI: 10.1155/2020/3063710.
Reckling W, Mitasova H, Wegmann K, Kauffman G, Reid R. 2021. Efficient drone-based rare plant monitoring using a species distribution model and ai-based object detection. Drones 5 (4): 110. DOI: 10.3390/drones5040110.
Santoso H. 2020. Surveillance and mapping of basal stem rot disease in oil palm plantation using Unmanned Aerial Vehicle (UAV) and multispectral camera. Jurnal Fitopatologi Indonesia 16 (2): 69-80. DOI: 10.14692/jfi.16.2.69-80. [Indonesian]
Sari DW, Hidayat FN, Abdul I. 2021. Efficiency of land use in smallholder palm oil plantations in Indonesia: A stochastic frontier approach. For Soc 5 (1): 75-89. DOI: 10.24259/fs.v5i1.10912.
Sheriza MR, Nurul MF, Ainuddin NA. 2020. Application of remote sensing to assess the biophysical characteristics of palm oil plant for ecological study. J Landsc Ecol 13 (3): 63-78. DOI: 10.2478/jlecol-2020-0017.
Siddiqui Y, Surendran A, Paterson RRM, Ali A, Ahmad K. 2021. Current strategies and perspectives in detection and control of basal stem rot of oil palm. Saudi J Biol Sci 28 (5): 2840-2849. DOI: 10.1016/j.sjbs.2021.02.016.
Smith P, Cotrufo MF, Rumpel C et al. 2015. Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. Soil 1: 665-685. DOI: 10.5194/soil-1-665-2015.
Srinarta K. 2022. Analysis of calculating the number of palm oil plant based on the Canopy Height Model (CHM) and Local Maxima (LM) algorithms. Jurnal Geodesi Undip 11 (1): 51-60. DOI: 10.14710/jgundip.2022.32315. [Indonesian]
Suab SA, Syukur MS, Avtar R, Korom A. 2019. Unmanned Aerial Vehicle (UAV) derived Normalised Difference Vegetation Index (NDVI) and Crown Projection Area (CPA) to detect health conditions of young oil palm plant for precision agriculture. Intl Arch Photogramm Remote Sens Spat Inf Sci XLII-4/W16: 611-614. DOI: 10.5194/isprs-archives-XLII-4-W16-611-2019.
Sukariawan A, Febrianto EB, Sakiah, Ridho M, Karnando D. 2021. Ganoderma boninense control in palm oil plantations using Trichoderma harzianum in various media. IOP Conf Ser: Earth Environ Sci 819: 012001. DOI: 10.1088/1755-1315/819/1/012001.
Sukarman, Saidy AR, Rusmayadi G, Adriani DE, Primananda S, Suwardi, Wirianata H, Nugroho AP, Sutiarso L. 2022. Application of oil palm dissection method to predict bunch production in commercial-Scale oil palm plantation. In: International Conference on Sustainable Environment, Agriculture and Tourism (ICOSEAT 2022). Tanjung Pesona Beach Resort, Sungailiat, Bangka, 21-23 July 2022. DOI: 10.2991/978-94-6463-086-2_21.
Thoha AS, Lubis OAO, Hulu DLN, Sari TY, Mardiyadi Z. 2022. Utilization of UAV technology for mapping of mangrove ecosystems at Belawan, Medan City, North Sumatra, Indonesia. IOP Conf Ser: Earth Environ Sci 977: 012102. DOI: 10.1088/1755-1315/977/1/012102.
Uke A, Nakazono-Nagaoka E, Chuah J-A, Zain N-AA, Amir H-G, Sudesh K, Abidin NZHAZ, Hashim Z, Kosugi A. 2021. Effect of decomposing oil palm trunk fibers on plant growth and soil microbial community composition. J Environ Manag 295: 113050. DOI: 10.1016/j.jenvman.2021.113050.
Yarak K, Witayangkurn A, Kritiyutanont K, Arunplod C, Shibasaki R. 2021. Oil palm tree detection and health classification on high-resolution imagery using deep learning. Agriculture 11 (2): 183. DOI: 10.3390/agriculture11020183.
Zhao J, Elmore AJ, Lee JSH, Numata I, Zhang X, Cochrane MA. 2023. Replanting and yield increasing strategies for alleviating the potential decline in palm oil production in Indonesia. Agric Syst 210: 103714. DOI: 10.1016/j.agsy.2023.103714.
Zheng J, Fu H, Li W, Wu W, Yu L, Yuan S, Tao WYW, Pang TK, Kanniah KD. 2021. Growing status observation for oil palm plant using Unmanned Aerial Vehicle (UAV) images. ISPRS J Photogramm Remote Sens 173: 95-121. DOI: 10.1016/j.isprsjprs.2021.01.008.