Assessment of soil fraction, carbon storage capacity, and rate of carbon uptake from three coastal ecosystems: Mangroves, seagrass, and mudflats in Benoa Bay, Indonesia

##plugins.themes.bootstrap3.article.main##

I GUSTI NGURAH PUTU DHARMAYASA
I PUTU SUGIANA
PUTU YUDI ADITYA PUTRI
KWANRUETAI BOONYASANA

Abstract

Abstract. Dharmayasa IGNP, Sugiana IP, Putri PYA, Boonyasana K. 2024. Assessment of soil fraction, carbon storage capacity, and rate of carbon uptake from three coastal ecosystems: Mangroves, seagrass, and mudflats in Benoa Bay, Indonesia. Biodiversitas 25: 2541-2549. Coastal habitats, known as blue carbon ecosystems, are highly productive at absorbing and storing carbon. Most carbon is stored as soil organic carbon, and its quantity can vary depending on various factors, including the presence of plants such as mangroves and seagrass, and environmental conditions, including soil fraction. This study quantifies soil carbon stored and its burial rate in three primary coastal ecosystems: mangroves, seagrasses, and mudflats. The ashing method (loss on ignition) is used to quantify carbon content, which is then converted into soil carbon storage and burial rate. Gravimetry and the settling time method are used to determine the soil fraction. We also measure the soil and water properties directly during the sampling time. This study revealed significant soil carbon stock and burial rate variations across different ecosystems. The order of ecosystems with the most extensive carbon stock and burial rate is as follows: mangrove (69-145 tC ha-1 and 1.6-3.4 tCha-1yr-1)>seagrass (63-75 tC ha-1 and 1.5-1.7 tCha-1yr-1)>mudflat (49-61 tC ha-1 and 1.2-1.4 tCha-1yr-1). Mangroves with natural growth have a higher carbon storage capacity than rehabilitated ones. Soil carbon content is highly correlated with the soil and water pH, Dissolved Oxygen (DO), water content, bulk density, and soil type. The findings demonstrate that carbon absorption capability varies among coastal habitats, with vegetated environments exhibiting higher carbon storage levels. Converting land, particularly mudflats, into seagrass beds or mangrove forests may maximize the efficiency of coastal ecosystems as carbon sinks. However, it should be noted that these findings are only estimates, and the precise measurement numbers may differ due to seasonal circumstances or reclamation activities, which might cause oscillations in sedimentation rates. These variations, in turn, could affect the levels of carbon stored and the speed at which it is buried.

##plugins.themes.bootstrap3.article.details##

References
Alongi DM. 2014. Carbon cycling and storage in mangrove forests. Annu Rev Mar Sci 6: 195–219. DOI: 10.1146/annurev-marine-010213-135020.
Amorim HC, Araujo MA, Lal R, Zinn YL. 2023. What C: N ratios in soil particle-size fractions really say: N is preferentially sorbed by clays over organic C. Catena 230: 107230. DOI: 10.1016/j.catena.2023.107230.
Bouillon S, Borges AV, Castañeda?Moya E, Diele K, Dittmar T, Duke NC, Kristensen E, Lee SY, Marchand C, Middelburg JJ, Rivera?Monroy VH, Smith III TJ, Twilley RR. 2008. Mangrove production and carbon sinks: a revision of global budget estimates. Glob Biogeochem Cycl 22 (2): 1-12. DOI: 10.1029/2007GB003052.
Breithaupt JL, Smoak JM, Smith TJ, Sanders CJ, Hoare A. 2012. Organic carbon burial rates in mangrove soils: Strengthening the global budget. Glob Biogeochem Cycl 26 (3): 1-11. DOI: 10.1029/2012GB004375.
Bunting P, Rosenqvist A, Lucas RM, Rebelo LM, Hilarides L, Thomas N, Hardy A, Itoh T, Shimada M, Finlayson CM. 2018. The global mangrove watch—a new 2010 global baseline of mangrove extent. Remote Sens 10 (10): 1669. DOI: 10.3390/rs10101669.
Chen GC, Ulumuddin YI, Pramudji S, Chen SY, Chen B, Ye Y, Ou DY, Ma ZY, Huang H, Wang JK. 2014. Rich soil carbon and nitrogen but low atmospheric greenhouse gas fluxes from North Sulawesi mangrove swamps in Indonesia. Sci Total Environ 487: 91-96. DOI: 10.1016/j.scitotenv.2014.03.140.
Chen Y, Li Y, Thompson C, Wang X, Cai T, Chang Y. 2018. Differential soil trapping abilities of mangrove and saltmarsh vegetation in a subtropical estuary. Geomorphology 318: 270-282. DOI: 10.1016/j.geomorph.2018.06.018.
Chen ZL, Lee SY. 2022. Tidal flats as a significant carbon reservoir in global coastal ecosystems. Front mar sci 9: 900896. DOI: 10.3389/fmars.2022.900896.
Dervash MA, Yousuf A, Ozturk M, Bhat RA. 2023. Global warming: Impacts of temperature escalation. In: Dervash MA, Yousuf A (eds). Phytosequestration: Strategies for Mitigation of Aerial Carbon Dioxide and Aquatic Nutrient Pollution. Springer, Cham.
Dewanti LP, Subagiyo S, Wijayanti DP. Analysis of Biomass and Stored Carbon Stock in Mangrove Forest Area, Taman Hutan Raya Ngurah Rai Bali. Saintek Perikanan: Indonesian Journal of Fisheries Science and Technology 16(3): 219-224. DOI: 10.14710/ijfst.16.3.%p
Dharmayasa IG, Surakit K, Jindal R, Thongdara R. 2022. Climate Change and Rainfall Projections in the Ayung Watershed, Bali, Indonesia using NCAR Model. Engineering Access 8(1):67-73. DOI: 10.14456/mijet.2022.9.
Eid EM, Shaltout KH. 2016. Distribution of soil organic carbon in the mangrove Avicennia marina (Forssk.) Vierh. along the Egyptian Red Sea Coast. Reg Stud Mar Sci 3: 76-82. DOI: 10.1016/j.rsma.2015.05.006.
Eid EM, Khedher KM, Ayed H, Arshad M, Moatamed A, Mouldi A. 2020. Evaluation of carbon stock in the soil of two mangrove species, Avicennia marina and Rhizophora mucronata, growing in the Farasan Islands, Saudi Arabia. Oceanologia 62(2): 200-213. DOI: 10.1016/j.oceano.2019.12.001.
Friesen SD, Dunn C, Freeman C. 2018. Decomposition as a regulator of carbon accretion in mangroves: a review. Ecol Eng 114: 173-178. DOI: 10.1016/j.ecoleng.2017.06.069.
Fu C, Frappi S, Havlik MN, Howe W, Harris SD, Laiolo E, Gallagher AJ, Masqué P, Duarte CM. 2023. Substantial blue carbon sequestration in the world’s largest seagrass meadow. Commun Earth Environ 4(1): 1-9. DOI: 10.1038/s43247-023-01154-0.
Gacia E, Duarte CM, Middelburg JJ. 2002. Carbon and nutrient deposition in a Mediterranean seagrass (Posidonia oceanica) meadow. Limnol Oceanogr 47(1): 23-32. DOI: 10.4319/lo.2002.47.1.0023.
Gao Y, Zhou J, Wang L, Guo J, Feng J, Wu H, Lin G. 2019. Distribution patterns and controlling factors for the soil organic carbon in four mangrove forests of China. Glob Ecol Conserv 17: e00575. DOI: 10.1016/j.gecco.2019.e00575.
Hall SJ, McDowell WH, Silver WL. 2013. When wet gets wetter: decoupling of moisture, redox biogeochemistry, and greenhouse gas fluxes in a humid tropical forest soil. Ecosystems 16: 576-589. DOI: 10.1007/s10021-012-9631-2.
Hogarth PJ. 2015. The biology of mangroves and seagrasses. Oxford university press, United Kingdom.
Inoue T. 2019. Carbon sequestration in mangroves. In: Kuwae T, Hori M (eds). Blue Carbon in Shallow Coastal Ecosystems: Carbon Dynamics, Policy, and Implementation. Springer, Singapore.
IPCC. 2021. Climate change 2021: The physical science basis (p. 2391). Contribution of Working group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. DOI: 10.1017/9781009157896.
Kauffman JB, Bhomia RK. 2017. Ecosystem carbon stocks of mangroves across broad environmental gradients in West-Central Africa: Globaland regional comparisons. PLoS One 12 (11): e0187749. DOI: 10.1371/journal.pone.0187749.
Khan AA. 2019. Temporary Removal: Why would sea-level rise for global warming and polar ice-melt?. Geosci Front 10(2): 481-494. DOI: 10.1016/j.gsf.2018.01.008.
Kusumaningtyas MA, Hutahaean AA, Fischer HW, Pérez-Mayo M, Ransby D, Jennerjahn TC. 2019. Variability in the organic carbon stocks, sources, and accumulation rates of Indonesian mangrove ecosystems. Estuar Coast Shelf Sci 218: 310-323. DOI: 10.1016/j.ecss.2018.12.007.
Li J, Yang W, Li Q, Pu L, Xu Y, Zhang Z, Liu L. 2018. Effect of reclamation on soil organic carbon pools in coastal areas of eastern China. Front Earth Sci 12: 339-348. DOI: 10.1007/s11707-018-0680-5.
Liu J, Zhou Y, Valach A, Shortt R, Kasak K, Rey?Sanchez C, Hemes KS, Baldocchi D, Lai DY. 2020. Methane emissions reduce the radiative cooling effect of a subtropical estuarine mangrove wetland by half. Glob Change Biol 26(9): 4998-5016. DOI: 10.1111/gcb.15247.
Luo M, Huang JF, Zhu WF, Tong C. 2019. Impacts of increasing salinity and inundation on rates and pathways of organic carbon mineralization in tidal wetlands: a review. Hydrobiologia 827: 31-49. DOI: 10.1007/s10750-017-3416-8.
Maharta IP, Hendrawan IG, Suteja Y. 2018. Prediksi laju soilasi di Perairan Teluk Benoa menggunakan pemodelan numerik. J Mar Aquat Sci 5(1), 44-54. DOI: 10.24843/jmas.2019.v05.i01.p06.
Martha S. 2017. The analysis of geospatial information for validating some numbers of islands in Indonesia. Indones. J Geogr 49(2): 204-211. DOI: 10.22146/ijg.12792.
Mateo M, Cebrián J, Dunton K, Mutchler T. 2006. Carbon flux in seagrass ecosystems. In: Larkum, W.D., Orth, R.J., Duarte, C.M. (eds). Seagrasses: Biology, Ecology and Conservation. Springer, Dordrecht.
Matus FJ. 2021. Fine silt and clay content is the main factor defining maximal C and N accumulations in soils: a meta-analysis. Sci Rep 11(1):6438. DOI: 10.1038/s41598-021-84821-6.
Miyajima T, Hamaguchi M. 2019. Carbon sequestration in soil as an ecosystem function of seagrass meadows. In: Kuwae T, Hori M (eds). Blue Carbon in Shallow Coastal Ecosystems: Carbon Dynamics, Policy, and Implementation. Springer, Singapore.
Moomaw WR, Chmura GL, Davies GT, Finlayson CM, Middleton BA, Natali SM, Perry JE, Roulet N, Sutton-Grier AE. 2018. Wetlands in a changing climate: science, policy and management. Wetlands 38(2): 183-205. DOI: 10.1007/s13157-018-1023-8.
Murdiyarso D, Purbopuspito J, Kauffman JB, Warren MW, Sasmito SD, Donato DC, Manuri S, Krisnawati H, Taberima S, Kurnianto S. 2015. The potential of Indonesian mangrove forests for global climate change mitigation. Nat Clim Change 5 (12): 1089-1092. DOI: 10.1038/nclimate2734.
Parnata IK, Putra ID, Indrawan GS. 2020. Simpanan karbon pada padang lamun di Perairan Tanjung Benoa, Bali. J Mar Aquat Sci 6: 13-21. DOI: 10.24843/jmas.2020.v06.i01.p02.
Perez A, Libardoni BG, Sanders CJ. 2018. Factors influencing organic carbon accumulation in mangrove ecosystems. Biol Lett 14 (10): 237. DOI: 10.1098/rsbl.2018.0237.
Phang VX, Chou LM, Friess DA. 2015. Ecosystem carbon stocks across a tropical intertidal habitat mosaic of mangrove forest, seagrass meadow, mudflat and sandbar. Earth Surf. Process Landf 40(10): 1387-1400. DOI: 10.1002/esp.3745.
Rahadiarta IK, Putra ID, Suteja Y. 2019. Simpanan karbon pada padang lamun di kawasan Pantai Mengiat, Nusa Dua Bali. J Mar. Aquat Sci 5(1): 1-10. DOI: 10.24843/jmas.2019.v05.i01.p01.
Sasmito SD, Kuzyakov Y, Lubis AA, Murdiyarso D, Hutley LB, Bachri S, Friess DA, Martius C, Borchard N. 2020. Organic carbon burial and sources in soils of coastal mudflat and mangrove ecosystems. Catena 187:104414. DOI: 10.1016/j.catena.2019.104414.
Serrano O, Kelleway JJ, Lovelock C, Lavery PS. 2019. Conservation of blue carbon ecosystems for climate change mitigation and adaptation. In: Perillo GME, Wolanski E (eds). Coastal wetlands (Second Edition). Elsevier, United Kingdom.
Spivak AC, Sanderman J, Bowen JL, Canuel EA, Hopkinson CS. 2019. Global-change controls on soil-carbon accumulation and loss in coastal vegetated ecosystems. Nat Geosci 12(9): 685-692. DOI: 10.1038/s41561-019-0435-2.
Sugiana IP, Andiani AAE, Dewi IGAIP, Karang IWGA, As-Syakur AR, Dharmawan IWE. 2022. Spatial distribution of mangrove health index on three genera dominated zones in Benoa Bay, Bali, Indonesia. Biodiversitas 23 (7): 3407-3418. DOI: 10.13057/biodiv/d230713.
Sugiana IP, Faiqoh E, Adame MF, Indrawan GS, Andiani AA, Dewi IG, Dharmawan IWE. 2023. Soil greenhouse gas fluxes to the atmosphere during the wet season across mangrove zones in Benoa Bay, Indonesia. Asian J Atmos Environ 17(1): 13. DOI: 10.1007/s44273-023-00014-9.
Sugiana IP, Prartono T, Rastina, Koropitan AF. 2024. Ecosystem carbon stock and annual sequestration rate from three genera-dominated mangrove zones in Benoa Bay, Bali, Indonesia. Biodiversitas 25(1): 153-165. DOI: 10.13057/biodiv/d250133
Sui L, Wang J, Yang X, Wang Z. 2020. Spatial-temporal characteristics of coastline changes in Indonesia from 1990 to 2018. Sustainability 12(8): 3242. DOI: 10.3390/su12083242.
Twilley RR, Castañeda-Moya E, Rivera-Monroy VH, Rovai A. 2017. Productivity and carbon dynamics in mangrove wetlands. In: RiveraMonroy VH, Kristensen (eds). Mangrove Ecosystems: A Global Biogeographic Perspective. Springer, Switzerland. DOI: 10.1007/978-3-319-62206-45.
Vernianda C, Watiniasih NL, Faiqoh E, Giri Putra IN. 2022. Analisis karbon dalam sedimen pada ekosistem lamun di Teluk Gilimanuk, Bali. Journal of Marine Research and Technology 5(2): 105-113. DOI: 10.24843/JMRT.2022.v05.i02.p09.
Wahyudi AA, Rahmawati S, Irawan A, Hadiyanto H, Prayudha B, Hafizt M, Afdal A, Adi NS, Rustam A, Hernawan UE, Rahayu YP. 2020. Assessing carbon stock and sequestration of the tropical seagrass meadows in Indonesia. Ocean Sci J 55: 85-97. DOI: 10.1007/s12601-020-0003-0.
Wang Q, Song J, Cao L, Li X, Yuan H, Li N. 2017. Distribution and storage of soil organic carbon in a coastal wetland under the pressure of human activities. J Soils Sediments 17: 11-22. DOI: 10.1007/s11368-016-1475-5.
Wijana IM, As-syakur AR, Andiani AA, Dewi IG, Sugiana IP, Novanda IG, Premananda MG, Brasika IB. 2023. Mangrove biomass sequestration in Benoa Bay. E3S Web Conf 442: 01009. DOI: 10.1051/e3sconf/202344201009.
Wijaya IM, Sugiana IP, Assyakur AR, Wijana IM. 2023. Comparison of mangrove vegetation in natural and ex-fisheries area in Benoa Bay, Bali. AACL Bioflux 16(2): 825-836.
Xiong Y, Liao B, Proffitt E, Guan W, Sun Y, Wang F, Liu X. 2018. Soil carbon storage in mangroves is primarily controlled by soil properties: A study at Dongzhai Bay, China. Sci Total Environ 619: 1226-1235. DOI: 10.1016/j.scitotenv.2017.11.187.
Yang P, Shu Q, Liu Q, Hu Z, Zhang S, Ma Y. 2021. Distribution and factors influencing organic and inorganic carbon in surface soils of tidal flats in northern Jiangsu, China. Ecol Indic 126: 107633. DOI: 10.1016/j.ecolind.2021.107633.
Zou H, Li X, Li S, Xu Z, Yu Z, Cai H, Chen W, Ni X, Wu E, Zeng G. 2023. Soil organic carbon stocks increased across the tide-induced salinity transect in restored mangrove region. Sci Rep 13(1): 19758. DOI: 10.1038/s41598-023-45411-w.