Life history traits of the gastropod-associated bacterivorous nematode Caenorhabditis brenneri (Nematoda: Rhabditida)

##plugins.themes.bootstrap3.article.main##

LOEL DALAN
https://orcid.org/0000-0002-2341-9520
VERONICA TAÑAN
https://orcid.org/0000-0002-8151-9562
MICHELLE ANNE DIANO
https://orcid.org/0000-0001-8636-7898
CESAR DEMAYO
https://orcid.org/0000-0003-1646-825X
MYLAH TABELIN
https://orcid.org/0000-0002-6383-7049
NANETTE HOPE SUMAYA
https://orcid.org/0000-0002-2645-1120

Abstract

Abstract. Dalan L, Tañan V, Diano MA, Demayo C, Tabelin M, Sumaya NH. 2024. Life history traits of the gastropod-associated bacterivorous nematode Caenorhabditis brenneri (Nematoda: Rhabditida). Biodiversitas 25: 3106-3113. Caenorhabditis species are associated with decaying plant materials and invertebrates such as terrestrial gastropods. Few Caenorhabditis species have been studied regarding their ecology, genetics, development, and essential life history traits (LHT). In this study, we describe the life cycle of a free-living, wild-type, bacterivorous nematode, Caenorhabditis brenneri Sudhaus and Kiontke 2007, associated with the terrestrial slug Philippinella moellendorffi Collinge 1899 and account for the effects of food density and temperature on its population dynamics by employing the hanging drop technique. The bacterial food supply was sourced from the slug cadaver and identified as Alcaligenes faecalis (MT012081). C. brenneri was fed with varying bacterial densities (109 and 5×109 cells mL-1) and incubated at 20 and 25°C. The bacterial food density-temperature interaction was found to have no significant influence on the offspring production of C. brenneri. Moreover, the total fertility rate (TFR) and net reproductive rate (Ro) are higher in 109 cells mL-1 in both temperatures (TFR at 20°C: 139; 25°C: 169 and Ro at 20°C: 134; 25°C: 156). Whereas the alternative generation time (To, T1, T) and population doubling time (PDT) are faster at 25°C in both bacterial densities, the intrinsic rate of natural increase (rm) is faster at lower temperatures (20°C) in both bacterial densities. The average lifespan of C. brenneri is seven days when fed with A. faecalis. Offspring somatic growth (body length and width) was influenced by bacterial food density-temperature interaction with increased length and girth observed in higher bacterial density and temperature in our knowledge. This study is the first attempt to use A. faecalis, a wild-type bacterium from the terrestrial slug P. moellendorffi cadaver, as the bacterial food source for a Caenorhabditis LHT analysis.

##plugins.themes.bootstrap3.article.details##

References
ADDIS T, TESHOME A, STRAUCH O, and EHLERS RU. 2014. Life history trait analysis of the entomopathogenic nematode Steinernema riobrave. Nematology 16, 929-936. DOI: 10.1163/15685411-00002819.
ADDIS T, TESHOME A, STRAUCH O. and EHLERS RU. 2016a. Life history trait analysis of the entomopathogenic nematode Steinernema feltiae provides the basis for prediction of dauer juvenile yields in monoxenic liquid culture. Applied Microbiology and Biotechnology 100, 4357-4366. DOI: 10.1007/s00253-015-7220-y.
ADDIS T, DEMISSIE S, STRAUCH O. and EHLERS RU. 2016b. Influence of bacterial density and mating on life history traits of Heterorhabditis bacteriophora. Nematology 18, 963-972. DOI: 10.1163/15685411-00003008.
ADDIS T, MIJUŠKOVIC N, STRAUCH O. and EHLERS RU. 2016c. Life history traits , liquid culture production and storage temperatures of Steinernema yirgalemense. Nematology 18, 367-376. DOI: 10.1163/15685411-00002966.
ALTSCHUL SF, GISH W, MILLER EW, and LIPMAN D. 1990. Basic local alignment search tool. Journal of Molecular Biology 215, 403-410. DOI: 10.1016/s0022-2836(05)80360-2.
AMRIT FR, BOEHNISCH CM, and MAY RC. 2010. Phenotypic covariance of longevity, immunity and stress resistance in the Caenorhabditis nematodes. PloS one, 5(4), e9978.
AYUB F, STRAUCH O, SEYCHELLES L, and EHLERS RU. 2013. Influence of temperature on life history traits of the free-living, bacterial-feeding nematode Panagrolaimus sp. strain NFS-24. Nematology 15, 939-946. DOI: 10.1163/15685411-00002732.
BARDGETT RD and VAN DER PUTTEN WH. 2014. Belowground biodiversity and ecosystem functioning. Nature 515: 505–511.
BRENNER S. 1974. The genetics of Caenorhabditis elegans. Genetics 77, 71-94.
BROWN IM, WHARTON DA, and MILLAR RB. 2004. The influence of temperature on the life
history of the Antarctic nematode Panagrolaimus davidi. Nematology 6, 883-890. DOI: 10.1163/1568541044038641.
CHEN Y, LEE C, LIN Y, YIN K, HO C, and LIU T. 2015. Obtaining long 16S rDNA sequences using multiple primers and its application on dioxin-containing samples. BMC Bioinformatics, 16 (18), pp.1-11. https://doi.org/10.1186/11471-2105-16-S18-S13
CICHE TA and ENSIGN JC. 2003. For the insect pathogen Photorhabdus luminescens, which end of a nematode is out?. Applied Environmental Microbiology 69, 1890-1897. DOI: 10.1128/AEM.69.4.1890-1897.2003.
COUILLAULT C. and EWBANK JJ. 2002. Diverse bacteria are pathogens of Caenorhabditis elegans. Infection and Immunity 70, 4705-4707. DOI: 10.1128/iai.70.8.4705-4707.2002.
DALAN LB, DIANO MAB, TANDINGAN DE LEY I, and SUMAYA NH. 2022. First report of Caenorhabditis brenneri (Nematoda: Rhabditida) isolated from the cadaver of Philippinella moellendorffi (Stylommatophora: Ariophantidae), a terrestrial slug in the Philippines. Journal of Helminthology 96, 1-5. DOI: 10.1017/ S0022149X22000475.
DEY A, CHAN CKW, THOMAS CG, and CUTTER AD. 2013. Molecular hyperdiversity defines populations of the nematode Caenorhabditis brenneri. PNAS 110, 11056-11060. DOI: 10.1073/pnas.1303057110/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1303057110.
DIANO MA, DALAN L, ROLISH P, and SUMAYA, NH. 2022. First report, morphological and molecular characterization of Caenorhabditis brenneri (Nematoda: Rhabditidae) isolated from the giant African land snail Achatina fulica (Gastropoda: Achatinidae). Biologia 469-478. DOI: 10.1007/s11756-021-00972-x.
FITCH DH, EMMONS SW, and BAIRD SE. 1994. Caenorhabditis vulgaris sp. n. (Nematoda: Rhabditidae): a necromenic associate of pill bugs and snails. Nematologica 40, 1-11. DOI: 10.1163/003525994x00012.
GILARTE P, KREUZINGER-JANIK B, MAJDI N, and TRAUNSPURGER W. 2015. Life-history traits of the model organism Pristionchus pacificus recorded using the hanging drop method: Comparison with Caenorhabditis elegans. PLoS ONE 10, 1-13. DOI: 10.1371/journal.pone.0134105.
GREWAL PS, TAN L, and ADAMS BJ. 2003. Parasitism of molluscs by nematodes: Types of associations and evolutionary trends. Journal of Nematology 35, 146-156.
DE GRISSE AT. 1969. Redescription ou modification de quelques techniques utilisées dans l’étude des nématodes phytoparasitaires. Mededelingen van de Rijks Faculteit Landbouwwetenschappen 34, 351-369.
HALL CA, STANFORD JA, and HAUER FR. 1992. The distribution and abundance of organisms as a consequence of energy balances along multiple environmental gradients. Oikos 65, 377–390. doi: 10.2307/3545553.
JOHNSON TE, FRIEDMAN DB, FOLTZ N, FITZPATRICK P, and SHOEMAKER JE. 1990. Genetic variants and mutations of Caenorhabditis elegans provides tools for dissecting the aging process. In: D.E. Harrison (Ed.) Genetic Effects on Aging II. II ed. Caldwell, NJ: The Telford, Inc. , pp. 101-127.
KAHVECI A, ASICIOGLU E, TIGEN E, ARI E, ARIKAN H, ODABASI Z, and OZENER C. 2011. Unusual causes of peritonitis in a peritoneal dialysis patient?: Alcaligenes faecalis and Pantoea agglomerans. Annals of Clinical Microbiology and Antimicrobials 10 DOI: 10.1186/1476-0711-10-12.
KALIAPERUMAL S, SRINIVASAN R, GUPTA A, and PARIJA SC. 2006. Postoperative endopthalmitis due to an unusual pathogen: Alcaligenes faecalis. Eye 20, 968-969. DOI: 10.1038/sj.eye.6702080.
KREUZINGER-JANIK B, BRINKE M, TRAUNSPURGER W, and MAJDI N. 2017. Life history traits of the free-living nematode, Plectus acuminatus Bastian, 1865, and responses to cadmium exposure. Nematology 19, 645-654. DOI: 10.1163/15685411-00003077.
MONDEJAR AJ, PAGLINAWAN F, TABELIN C, AGUILOS M, AGUILOS R, OPISO E, MARTINEZ JG, METILLO EB, SUMAYA NH, and VILLACORTE-TABELIN M. 2023. Survival, reproduction, and life history traits evaluation of Heterocephalobellus sp. and Cephalobus sp. from an artisanal and small-scale gold mine site, Davao de Oro, Philippines as bioindicators of heavy metal contamination, Philippine Journal of Science, 152 (6A): 2031-2048.
MORDI RM, BURKE ME, ODJADJARE EE, ENABULELE SA, and UMEH OJ. 2015. Prevalence of urinary tract infections (UTI) among pregnant women in university of Benin teaching hospital (UBTH) Benin City, Nigeria. Journal of Asian Scientific Research 5, 198-204.
MUSCHIOL D. AND TRAUNSPURGER W. 2007. Life cycle and calculation of the intrinsic rate of natural increase of two bacterivorous nematodes, Panagrolaimus sp. and Poikilolaimus sp. from chemoautotrophic Movile Cave, Romania. Nematology 9, 271-284. DOI: 10.1163/156854107780739117.
MUSCHIOL D, SCHROEDER F, and TRAUNSPURGER W. 2009. Life cycle and population growth rate of Caenorhabditis elegans studied by a new method. BMC Ecology 9, 1-13. DOI: 10.1186/1472-6785-9-14.
RAE R, VERDUN C, GREWAL PS, ROBERTSON JF, and WILSON MJ. 2007. Biological control of terrestrial molluscs using Phasmarhabditis hermaphrodita-progress and prospects. Pest Management Science 63, 1153-1164. DOI: https://doi.org/10.1002/ps.1424.
RORY DMD, SANDY L, TIMOTHY DP, and PAUL DL. 2014. Phasmarhabditis hermaphrodita (Nematoda: Rhabditidae), a potential biocontrol agent isolated for the first time from invasive slugs in North America. Nematology 16, 1129-1138. DOI: 10.1163/15685411-00002838.
POSIT TEAM 2024. RStudio: Integrated development for R. Posit Software, PBC, Boston, MA. http://www.posit.co/.
SCHIEMER F. 1982. Food dependence and energetics of free-living nematodes. Oecologia 54, 108-121. DOI: 10.1007/BF00541117.
SEINHORST JW. 1959. A rapid method for the transfer of nematodes from fixative to anhydrous glycerin. Nematologica 4, 67-69. DOI: 10.1163/187529259x00381.
SUDHAUS W. and KIONTKE K. 2007. Comparison of the cryptic nematode species Caenorhabditis brenneri sp. n. and C. remanei (Nematoda: Rhabditidae) with the stem species pattern of the Caenorhabditis Elegans group. Zootaxa 1456, 45-62.
TAIN LS, LOZANO E, SÁEZ AG, and LEROI AM. 2008. Dietary regulation of hypodermal polyploidization in C. elegans. BMC Developmental Biology 8, 1-9. DOI: 10.1186/1471-213X-8-28.
VAN DEN HOOGEN J, GEISEN S, ROUTH D, et al. 2019. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198. https://doi.org/10.1038/s41586-019-1418-6.
XIAO HF, LI G, MING D, HU F, and LI HX. 2014. Effect of different bacterial-feeding nematode species on soil bacterial numbers, activity, and community composition, Pedosphere 24, 116-124. https://doi.org/10.1016/S1002-0160(13)60086-7.
ZHAO J, ZHANG J, ZHU X, LU J, JIN B, and CHEN H. 2022. The Life Cycle of the Bacterial-Feeding Nematode Diplolaimella stagnosa and Its Population Growth in Response to Temperature and Food Availability. Frontiers in Ecology and Evolution, 10, 953608.