Interior shell patterns among the Spondylid species (Bivalvia: Spondylidae) in Mindanao, Philippines

##plugins.themes.bootstrap3.article.main##

FABIO JR. C. RUAZA
DONARD C. MATURAN
ERMELYN BUSTILLO

Abstract

Abstract. Ruaza FJC, Maturan DC, Bustillo E. 2024. Interior shell patterns among the Spondylid species (Bivalvia: Spondylidae) in Mindanao, Philippines. Biodiversitas 25: 2901-2906. The variations among the species of the Spondylus were assessed based on its interior shell pattern using landmark-based geometric morphometry. A total of 200 specimens were subjected to analysis. Samples of the Spondylid species were collected and photographed, and 15 landmarks from internal shell morphology were quantified and analyzed. The landmarks include the umbo, teeth, size of the muscle scar, and the pallial sinus. Multivariate analysis of variance revealed significant differences in internal shell characters among Spondylid species across sampling sites (p<0.05). Canonical Variance Analysis (CVA) effectively differentiated the local Spondylid species into distinct clusters. In addition, the relative warps captured the most significant sources of variation in the morphological characters analyzed, leading to effective differentiation between the groups or populations of the species. The most distinguishing characteristics among the species are the distance of the pallial line to the ventral tip of the adductor muscle scar and the size of the cardinal tooth. The internal shell characters among the Spondylid species exhibit notable disparity despite their great morphological similarity. These shell characters can be used in the identification while conservation efforts are still in the initial stage of development. The presence of notable dissimilarities in the internal shell characteristics among the Spondylid species indicates that even slight deviations can result in noticeable morphological distinctions. This discovery enhances the understanding of the species divergence within this group and underscores the significance of incorporating internal shell characteristics into taxonomic and ecological investigations.

##plugins.themes.bootstrap3.article.details##

References
Bergström P, Lindegarth M. 2016. Environmental influence on mussel (Mytilus edulis) growth–A quantile regression approach. Estuar Coast Shelf Sci 171: 123-132. DOI: 10.1016/j.ecss.2016.01.040.
Boretto GM, Baranzelli MC, Gordillo S, Consoloni I, Zanchetta G, Morán G. 2014. Shell morphometric variations in a Patagonian Argentina clam (Ameghinomya antiqua) from the Mid-Pleistocene (MIS 7) to the present. Quater Inter 352: 48-58. DOI: 10.1016/j.quaint.2014.09.033.
Bourdeau PE, Butlin RK, Brönmark CT, Edgell C, Hoverman JT, Hollander J. 2015. What can aquatic gastropods tell us about phenotypic plasticity? A review and metaanalysis. Heredity 115 (4): 312-321. DOI: 10.1038/hdy.2015.58.
Carboni S, Evans S, Tanner KE, Davie A, Bekaert M, Fitzer SC. 2021. Are shell strength phenotypic traits in mussels associated with species alone? Aquac J 1 (1): 3-13. DOI: 10.3390/aquacj1010002.
Gordillo S, Archuby F. 2014. Live-live and live-dead interactions in marine death assemblages: The case of the Patagonian Clam Venus antiqua. Acta Palaeontol Pol 59 (2): 429-442. DOI: 10.4202/app.2011.0176.
Grant H, Williams S. 2018. Phylogenetic distribution of shell color in Bivalvia (Mollusca). Biol J Linn Soc 125 (2): 377-391. DOI: 10.1093/biolinnean/bly122.
Hammer O, Harper DAT, Ryan PD. 2001. PAST version 1.91: Paleontological statistical software package for education and data analysis. Palaeont Electr 4 (1): 1-9.
Jijina K, Anand PP, Neethu CB, Vardhanan YS. 2023. Geometric morphometric shape and size analysis of endemic black Clam, Villorita cyprinoides (Gray, 1825) (Mollusca: Bivalvia: Cyrenidae) from Koottayi estuary, Kerala, South India. J Species Res 24 (73): 1-14. DOI: 10.54905/disssi/v24i73/e33s1521.
Kroeker K, Sanford E, Rose J, Blanchette C, Chan F, Chavez F, Gaylord B, Helmuth B, Hill T, Hofmann G, McManus M, Menge B, Nielsen, Raimondi P,1 Russell A, Washburn, L. 2016. Interacting environmental mosaics drive geographic variation. Ecol Lett 19 (7): 771-779. DOI: 10.1111/ele.12613.
Lee S, Jung J, Shi GR. 2017. A three-dimensional geometric morphometric study of the development of sulcus versus shell outline in Permian neospiriferine brachiopods. Lethaia 51 (1): 1-14. DOI: 10.1111/let.12217.
Liu Q, Guo Y, Yang Y, Mao J, Wang X, Liu H, Tian Y, Hao Z. 2024. Geometric morphometric methods for identification of oyster species based on morphology. Biodivers Data J 12: 1-6. DOI: 10.3897/BDJ.12.e115019.
Lodeiros C, Soria G, Valentich-Scott P, Munguía-Vega A, Cabrera JS, Cudney-Bueno R, Sonnenholzner S. 2016. Spondylids of eastern Pacific Ocean. J Shellfish Res 35 (2): 279-293. DOI: 10.2983/035.035.0203.
Martonos C, Damian A, Gudea AI, Bud I, Stan F. 2019. Morphological and morphometrical study of the auditory ossicles in chinchilla. Anat Histol Embryol 48 (4): 340-345. DOI: 10.1111/ahe.12446.
Morán GA, Martínez JJ, Boretto GM, Gordillo S, Boidi FJ. 2018. Shell morphometric variation of Ameghinomya antiqua (Mollusca, Bivalvia) during the late quaternary reflects environmental changes in North Patagonia, Argentina. Quater Inter 490: 43-49. DOI: 10.1016/j.quaint.2018.05.027.
Pro?ków M, Pro?ków J, B?a?ej P, Mackiewicz P. 2018. The influence of habitat preferences on shell morphology in ecophenotypes of Trochulus hispidus complex. Sci Total Environ 630: 1036-1043. DOI: 10.1016/j.scitotenv.2018.02.311.
Rocha V, Silveira I, Cascon H. 2015. Brazilian Spondylidae: A brief discussion about variation of shell ornamentation in the northeastern species. Arq Ciên Mar Fortaleza 48 (2): 79-84. http://repositorio.ufc.br/handle/riufc/28658.
Ruaza F, Ilano A. 2021. Stock assessment of Spondylus varius (Sowerby, 1827) in Lianga Bay, Surigao del Sur, Eastern Mindanao, Philippines. J Bio Env Sci 18 (1): 44-50. DOI: 10.5281/zenodo.6382375.
Ruaza F, Ilano A. 2023. Reproductive cycle of Spondylus varius (Sowerby, 1827) in Lianga Bay, Surigao Del Sur, Eastern Mindanao. Intl J Aquat Biol 5: 374-382. DOI: 10.22034/ijab.v11i5.1705.
Saenko S, Schilthuizen M. 2021. Evo-devo of shell colour in gastropods and bivalves. Curr Opin Genet Dev 69:1-5. DOI: 10.1016/j.gde.2020.11.009.
Shu Y, Shi L, Hao ZL, Mao JX, Wang XB, Tian Y, Chang YQ. 2022. Application of geometric morphology to the morphological classification and phylogeny of eight of scallop species. Mar Sci 46 (6): 61?69. DOI: 10.11759/hykx20210427003.
Taglioretti V, Sardella N, Fugassa M. 2014. Morphometric analysis of modern faeces as a tool to identify artiodactyls' coprolites. Quarter Inter 352: 64-67. DOI: 10.1016/j.quaint.2013.12.055.
Telesca L, Michalek K, Sanders T et al. 2018. Blue mussel shell shape plasticity and natural environments: Sci Rep 8 (2865): 1-15. DOI: 10.1038/s41598-018-20122-9.
Williams ST. 2016. Molluscan shell colour. Biol Rev 92 (2): 1039-1058. DOI: 10.1111/brv.12268.
Yang B, Zang Z, Yang C-Q, Wang Y, Orr MC, Wang H, Zhang A-B. 2022. Identification of species by combining molecular and morphological data using convolutional neural network. Syst Biol 71 (3): 690-705. DOI: 10.1093/sysbio/syab076.