Determining key mammalian species and food web robustness across different land cover vegetation using network analysis

##plugins.themes.bootstrap3.article.main##

IDUNG RISDIYANTO
YANTO SANTOSA
NYOTO SANTOSO
ARZYANA SUNKAR

Abstract

Abstract. Risdiyanto I, Santosa Y, Santoso N, Sunkar A. 2024. Determining key mammalian species and food web robustness across different land cover vegetation using network analysis. Biodiversitas 25: 3175-3190. The ecosystem's food web depicts the intricate energy flow and complex interactions among its diverse organisms. Organisms are not confined to single trophic levels or food chains; they establish multiple food connections with other organisms within the ecosystem. This study aims to identify critical mammalian species and assess the robustness of various ecosystem types, considering the diversity of species presence, through food web analysis. Computational graphic-based network analysis is employed to achieve this goal. Ecosystem types, categorized by their land cover, include plantation/agricultural forests, Bushes and shrubss, forests, and mixed landscapes. Network centrality metrics such as degree, closeness, betweenness, and eigenvector centrality are utilized to evaluate the presence of key species and ecosystem robustness. The relative contribution of mammalian species as connectors and regulators of energy flow in the food web ranges from 8-23% of all nodes involved. Key mammalian species are classified into ecosystem stability and sustainability keys. In Bushes and shrubss ecosystems, key species predominantly consist of mammalian predator species that are crucial for maintaining ecosystem stability through population control. Conversely, in other ecosystems, key species are primarily connectors, ensuring the sustained energy flow. The most resilient food webs are observed in Bushes and shrubss and mixed ecosystems due to their higher biomass growth rates and abundant presence of mammalian species. Utilizing food web analysis can significantly contribute to species and ecosystem conservation efforts by offering a comprehensive understanding of interspecies interactions, food web structures, and ecosystem dynamics.

##plugins.themes.bootstrap3.article.details##

References
Agrawal A, Gopal K. 2013. Biomass production in food chain and its role at trophic levels. Biomonitoring of Water and Waste Water 59-70. DOI: 10.1007/978-81-322-0864-8_6.
Allesina S, Pascual M. 2009. Googling food webs: can an eigenvector measure species’ importance for coextinctions?. PLoS Comput Biol 5 (9): e1000494. DOI: 10.1371/journal.pcbi.1000494.
Astudillo PX, Grass I, Siddons DC, Schabo DG, Farwig N. 2020. Centrality in species-habitat networks reveals the importance of habitat quality for high-andean birds in Polylepis Woodlands. Ardeola 67 (2): 307. DOI: 10.13157/arla.67.2.2020.ra5.
Baiser B, Whitaker N, Ellison AM. 2013. Modeling foundation species in food webs. Ecosphere 4 (12): art146. DOI: 10.1890/ES13-00265.1.
Bastian M, Heymann S, Jacomy M. 2009. Gephi: An open source software for exploring and manipulating networks. Proc Intl AAAI Conf Weblogs Soc Media 3 (1): 361-362. DOI: 10.1609/icwsm.v3i1.13937.
Bond WJ, Keeley JE. 2005. Fire as a global 'herbivore': The ecology and evolution of flammable ecosystems. Trends Ecol Evol 20 (7): 387-394. DOI: 10.1016/j.tree.2005.04.025.
Borrelli JJ, Ginzburg LR. 2014. Why there are so few trophic levels: Selection against instability explains the pattern. Food Webs 1 (1-4): 10-17. DOI: 10.1016/j.fooweb.2014.11.002.
Brandes U. 2001. A faster algorithm for betweenness centrality. J Math Sociol 25 (2): 163-177. DOI: 10.1080/0022250X.2001.9990249.
Cagua EF, Wootton KL, Stouffer DB. 2019. Keystoneness, centrality, and the structural controllability of ecological networks. J Ecol 107 (4): 1779-1790. DOI: 10.1111/1365-2745.13147.
Canning A, Death RG, Joy M. 2014. Predicting Food Web Structure and Robustness. Ecological Society of America, Sacramento, CA
Canning AD, Death RG. 2019. Food web structure but not robustness differ between rivers, lakes and estuaries. Oecol Aust 23 (1): 112-126. DOI: 10.4257/oeco.2019.2301.10.
Capocefalo D, Pereira J, Mazza T, Jordán F. 2018. Food web topology and nested keystone species complexes. Complexity 2018 (1): 1979214. DOI: 10.1155/2018/1979214.
Chaput-Bardy A, Alcala N, Secondi J, Vuilleumier S. 2017. Network analysis for species management in rivers networks: Application to the Loire River. Biol Conserv 210: 26-36. DOI: 10.1016/j.biocon.2017.04.003.
Chen JL, Zhang WJ. 2020. Parasites Govern the topological properties of food webs: A conclusion from network analysis. Appl Ecol Environ Res 18 (2): 3419-3437. DOI: 10.15666/aeer/1802_34193437.
Correia AM, Lopes LF. 2023. Revisiting biodiversity and ecosystem functioning through the lens of complex adaptive systems. Diversity 15 (8): 895. DOI: 10.3390/d15080895.
D’Alelio D, Libralato S, Wyatt T, Ribera d’Alcalà M. 2016. Ecological-network models link diversity, structure and function in the plankton food-web. Sci Rep 6 (1): 21806. DOI: 10.1038/srep21806.
Delmas E, Besson M, Brice M, Burkle LA, Dalla Riva GV, Fortin M, Gravel D, Guimarães PR, Hembry DH, Newman EA, Olesen JM, Pires MM, Yeakel JD, Poisot T. 2019. Analysing ecological networks of species interactions. Biol Rev 94 (1): 16-36. DOI: 10.1111/brv.12433.
Dunne JA. 2023. The network structure of food webs. Ecological Networks: 27-92. DOI: 10.1093/oso/9780195188165.003.0002.
Dunne JA, Williams RJ, Martinez ND. 2002. Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecol Lett 5 (4): 558-567. DOI: 10.1046/j.1461-0248.2002.00354.x.
Escobar LE, Romero-Alvarez D, Larkin DJ, Phelps NBD. 2019. Network analysis to inform invasive species spread among lakes. J Oceanol Limnol 37 (3): 1037-1041. DOI: 10.1007/s00343-019-7208-z.
Evans DM, Pocock MJO, Memmott J. 2013. The robustness of a network of ecological networks to habitat loss. Ecol Lett 16 (7): 844-852. DOI: 10.1111/ele.12117.
Feng G, Yan H, Yang X. 2019. Climate and food diversity as drivers of mammal diversity in Inner Mongolia. Ecol Evol 9 (4): 2142-2148. DOI: 10.1002/ece3.4908.
Fengzhen W, Yi T. 2019. Determination of key species in the food web and their impact on the robustness. Biodiv Sci 27 (10): 1132-1137. DOI: 10.17520/biods.2019208.
Fretwell SD. 1987. Food chain dynamics: The central theory of ecology? Oikos 50 (3): 291. DOI: 10.2307/3565489.
Funes M, Saravia LA, Cordone G, Iribarne OO, Galván DE. 2022. Network analysis suggests changes in food web stability produced by bottom trawl fishery in Patagonia. Sci Rep 12 (1): 10876. DOI: 10.1038/s41598-022-14363-y.
Galiana N, Arnoldi JF, Barbier M, Acloque A, de Mazancourt C, Loreau M. 2021. Can biomass distribution across trophic levels predict trophic cascades?. Ecol Lett 24 (3): 464-476. DOI: 10.1111/ele.13658.
Gellner G, McCann K, Hastings A. 2023. Stable diverse food webs become more common when interactions are more biologically constrained. Proc Natl Acad Sci 120 (31): e2212061120. DOI: 10.1073/pnas.2212061120.
Gouveia C, Móréh Á, Jordán F. 2021. Combining centrality indices: Maximizing the predictability of keystone species in food webs. Ecol Indic 126: 107617. DOI: 10.1016/j.ecolind.2021.107617.
González AM, Dalsgaard B, Olesen JM. 2010. Centrality measures and the importance of generalist species in pollination networks. Ecol Complex 7 (1): 36-43. DOI: 10.1016/j.ecocom.2009.03.008.
Gruner DS, Smith JE, Seabloom EW, Sandin SA, Ngai JT, Hillebrand H, Harpole WS, Elser JJ, Cleland EE, Bracken ME, Borer ET, Bolker BM. 2008. A cross?system synthesis of consumer and nutrient resource control on producer biomass. Ecol Lett 11: 740-755. DOI: 10.1111/j.1461-0248.2008.01192.x.
Hooper DU, Chapin III FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA. 2005. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol Monogr 75 (1): 3-35. DOI: 10.1890/04-0922.
Jiang LQ, Zhang WJ. 2015. Determination of keystone species in CSM food web: A topological analysis of network structure. Netw Biol 5 (1): 13-33. DOI: 10.1016/j.fooweb.2015.07.002.
Johnson S, Domínguez-García V, Donetti L, Muñoz MA. 2014. Trophic coherence determines food-web stability. Proc Natl Acad Sci 111 (50): 17923-17928. DOI: 10.1073/pnas.1409077111.
Jordán F, Benedek Z, Podani J. 2007. Quantifying positional importance in food webs: A comparison of centrality indices. Ecol Model 205 (1-2): 270-275. DOI: 10.1016/j.ecolmodel.2007.02.032.
Kéfi S. 2020. Ecological networks: From structure to dynamics. In: McCann KS, Gellner G (eds). Theoretical Ecology: Concepts and Applications. Oxford University Press, Oxford. DOI: 10.1093/oso/9780198824282.003.0010.
Kimball S, Principe Z, Deutschman D, Strahm S, Huxman TE, Lulow M, Balazs K. 2018. Resistance and resilience: Ten years of monitoring shrub and prairie communities in Orange County, CA, USA. Ecosphere 9 (5): e02212. DOI: 10.1002/ecs2.2212.
Kolesnikov V, Anikin V, Mosolova E, Faizliev A, Mironov S, Zemlyanskaya M, Pleshakov M, Sidorov S. 2019. Food chain analysis based on graph centrality indicators. J Phys: Conf Ser 1334 (1): 12004. DOI: 10.1088/1742-6596/1334/1/012004.
Kones JK, Soetaert K, van Oevelen D, Owino JO. 2009. Are network indices robust indicators of food web functioning? A Monte Carlo approach. Ecol Model 220 (3): 370-382. DOI: 10.1016/j.ecolmodel.2008.10.012.
Kortsch S, Primicerio R, Fossheim M, Dolgov AV, Aschan M. 2015. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists. Proc R Soc B Biol Sci 282 (1814): 20151546. DOI: 10.1098/rspb.2015.1546.
Lai S-M, Liu W-C, Jordán F. 2012. On the centrality and uniqueness of species from the network perspective. Biol Lett 8 (4): 570-573. DOI: 10.1098/rsbl.2011.1167.
Landi P, Minoarivelo HO, Brännström Å, Hui C, Dieckmann U. 2018. Complexity and stability of ecological networks: A review of the theory. Popul Ecol 60 (4): 319-345. DOI: 10.1007/s10144-018-0628-3.
Lever JJ, Van Nes EH, Scheffer M, Bascompte J. 2023. Five fundamental ways in which complex food webs may spiral out of control. Ecol Lett 26 (10): 1765-1779. DOI: 10.1111/ele.14293.
Libralato S, Christensen V, Pauly D. 2006. A method for identifying keystone species in food web models. Ecol Model 195 (3-4): 153-171. DOI: 10.1016/j.ecolmodel.2005.11.029.
Matsuda H, Namba T. 1991. Food web graph of a coevolutionarily stable community. Ecology 72 (1): 267-276. DOI: 10.2307/1938920.
McLeod AM, Leroux SJ. 2021. The multiple meanings of omnivory influence empirical, modular theory and whole food web stability relationships. J Anim Ecol 90 (2): 447-459. DOI: 10.1111/1365-2656.13378.
Meilhac J, Durand J-L, Beguier V, Litrico I. 2019. Increasing the benefits of species diversity in multispecies temporary grasslands by increasing within-species diversity. Ann Bot 123 (5): 891-900. DOI: 10.1093/aob/mcy227.
Mello MAR, Rodrigues FA, Costa L da F, Kissling WD, ?ekercio?lu ÇH, Marquitti FMD, Kalko EKV. 2015. Keystone species in seed dispersal networks are mainly determined by dietary specialization. Oikos 124 (8): 1031-1039. DOI: 10.1111/oik.01613.
Ng WP, van Manen FT, Sharp SP, Wong S Te, Ratnayeke S. 2021. Mammal species composition and habitat associations in a commercial forest and mixed-plantation landscape. For Ecol Manag 491: 119163. DOI: 10.1016/j.foreco.2021.119163.
O’Connell DP, Fusi M, Djamaluddin R, Rajagukguk BB, Bachmid F, Kitson JJN, Dunnett Z, Trianto A, Tjoa AB, Diele K, Evans DM. 2022. Assessing mangrove restoration practices using species?interaction networks. Restor Ecol 30 (4): e13546. DOI: 10.1111/rec.13546.
Ochoa-Hueso R, Delgado-Baquerizo M, Risch AC, Schrama M, Morriën E, Barmentlo SH, Geisen S, Hannula SE, Resch MC, Snoek BL, Putten WHvd. 2021. Ecosystem coupling: A unifying framework to understand the functioning and recovery of ecosystems. One Earth 4 (7): 951-966. DOI: 10.1016/j.oneear.2021.06.011.
Oehlers M, Fabian B. 2021. Graph metrics for network robustness-A survey. Mathematics 9 (8): 895. DOI: 10.3390/math9080895.
Pausas JG, Keeley JE. 2009. A burning story: The role of fire in the history of life. BioScience 59 (7): 593-601. DOI: 10.1525/bio.2009.59.7.10.
Pfeifer M, Lefebvre V, Peres CA et al. 2017. Creation of forest edges has a global impact on forest vertebrates. Nature 551 (7679): 187-191. DOI: 10.1038/nature24457.
Rodriguez ID, Marina TI, Schloss IR, Saravia LA. 2022. Marine food webs are more complex but less stable in sub-Antarctic (Beagle Channel, Argentina) than in Antarctic (Potter Cove, Antarctic Peninsula) regions. Mar Environ Res 174: 105561. DOI: 10.1016/j.marenvres.2022.105561.
Roemer GW, Gompper ME, Van Valkenburgh B. 2009. The ecological role of the mammalian mesocarnivore. BioScience 59 (2): 165-173. DOI: 10.1525/bio.2009.59.2.9.
Runghen R, Llopis-Belenguer C, McNeill MR, Dalla Riva GV, Stouffer DB. 2023. Using network analysis to study and manage human-mediated dispersal of exotic species. Biol Invasions 25 (11): 3369-3389. DOI: 10.1007/s10530-023-03122-3.
Smith JE, Pinter?Wollman N. 2021. Observing the unwatchable: Integrating automated sensing, naturalistic observations and animal social network analysis in the age of big data. J Anim Ecol 90 (1): 62-75. DOI: 10.1111/1365-2656.13362.
Staniczenko PPA, Lewis OT, Jones NS, Reed?Tsochas F. 2010. Structural dynamics and robustness of food webs. Ecol Lett 13 (7): 891-899. DOI: 10.1111/j.1461-0248.2010.01485.x.
Steele JH, He X. 2019. Network analysis of food webs. Encycloped Ocean Sci 1: 746-752. DOI: 10.1016/B978-0-12-409548-9.10802-4.
Strydom T, Catchen MD, Banville F, Caron D, Dansereau G, Desjardins-Proulx P, Forero-Muñoz NR, Higino G, Mercier B, Gonzalez A, Gravel D, Pollock L, Poisot T. 2021. A roadmap towards predicting species interaction networks (across space and time). Philos Trans R Soc B Biol Sci 376 (1837): 20210063. DOI: 10.1098/rstb.2021.0063.
Sun X, Zhao L, Zhao D, Huo Y, Tan W. 2020. Keystone species can be identified based on motif centrality. Ecol Indic 110: 105877. DOI: 10.1016/j.ecolind.2019.105877.
Sunaryo MSW, Salleh Z, Mamat M. 2013. Mathematical model of three species food chain with holling type-III functional response. Intl J Pure Appl Math 89 (5): 647-657. DOI: 10.12732/ijpam.v89i5.1.
Swift RJ, Anteau MJ, Ellis KS, Ring MM, Sherfy MH, Toy DL. 2023. Conspecific density and habitat quality affect breeding habitat selection: Support for the social attraction hypothesis. Ecosphere 14 (5): e4524. DOI: 10.1002/ecs2.4524.
Thompson RM, Brose U, Dunne JA, Hall RO, Hladyz S, Kitching RL, Martinez ND, Rantala H, Romanuk TN, Stouffer DB, Tylianakis JM. 2012. Food webs: Reconciling the structure and function of biodiversity. Trends Ecol Evol 27 (12): 689-697. DOI: 10.1016/j.tree.2012.08.005.
Trebilco R, Baum JK, Salomon AK, Dulvy NK. 2013. Ecosystem ecology: Size-based constraints on the pyramids of life. Trends Ecol Evol 28 (7): 423-431. DOI: 10.1016/j.tree.2013.03.008.
Tucker MA, Rogers TL. 2014. Examining predator-prey body size, trophic level and body mass across marine and terrestrial mammals. Proc R Soc B Biol Sci 281 (1797): 20142103. DOI: 10.1098/rspb.2014.2103.
Vallina SM, Le Quéré C. 2011. Stability of complex food webs: Resilience, resistance and the average interaction strength. J Theor Biol 272 (1): 160-173. DOI: 10.1016/j.jtbi.2010.11.043.
Van Dover CL. 2001. The ecology of Deep-Sea Hydrothermal Vents. Limnol Oceanogr 46 (8): 2094. DOI: 10.2307/j.ctv1zm2v35.12.
Webb P, Boltt G. 1990. Food chain to food web: A natural progression? J Biol Educ 24 (3): 187-190. DOI: 10.1080/00219266.1990.9655139.
Woodward G, Hildrew AG. 2002. Body?size determinants of niche overlap and intraguild predation within a complex food web. J Anim Ecol 71 (6): 1063-1074. DOI: 10.1046/j.1365-2656.2002.00669.x.
Wu J, Liu Y, Sui H, Xu B, Zhang C, Ren Y, Xue Y. 2020. Using network analysis to identify keystone species in the food web of Haizhou Bay, China. Mar Freshw Res 71 (4): 469-481. DOI: 10.1071/MF18417.
Yamaki K. 2015. Network governance of endangered species conservation: A case study of Rebun Lady’s-Slipper. J Nat Conserv 24: 83-92. DOI: 10.1016/j.jnc.2014.10.004.
Zhao J, Yu Q, Xu C, Ma J, Liu W, Sun W, Miao Y, Nawaz T. 2023. Integrated approach for ecological restoration and ecological spatial network optimization with multiple ecosystem functions in mining areas. Ecol Indic 156: 111141. DOI: 10.1016/j.ecolind.2023.111141.

Most read articles by the same author(s)

1 2 > >>