The impact of fungi in increasing essential oils and chemical components of agarwood (Gyrinops versteegii)

##plugins.themes.bootstrap3.article.main##

I MADE MEGA
NI LUH KARTINI
I GEDE SURANJAYA
IDA BAGUS PUTU BHAYUNAGIRI
MADE SRI SUMARNIASIH
I NENGAH SURATA ADNYANA

Abstract

Abstract. Mega IM, Kartini NL, Suranjaya IG, Bhayunagiri IBP, Sumarniasih MS, Adnyana INS. 2024. The impact of fungi in increasing essential oils and chemical components of agarwood (Gyrinops versteegii). Biodiversitas 25: 2552-2559. Essential oil, a key agarwood process product, is the fundamental ingredient in perfume, cosmetics, and drugs. The type of agarwood plant, the induction microbes, and the environmental factors influence the production of essential oil in agarwood. This research, characterized by its rigorous application of a randomized block design (RBD) experimental design and statistical analysis, aims to analyze the agarwood essential oil content and chemical components upon applying three fungal inoculants. The treatments applied are: (i) Trichoderma harzianum inoculant, (ii) Fusarium solani inoculant, (iii) Rhizopus microsporus inoculant, and (iv) Control (without fungal inoculant). Each treatment had 15 repetitions. The parameters observed are agarwood color, scent, essential oil content, and chemical components. The quantitative observation data was statistically analyzed by variance analysis, and if a significant value was found, the analysis was followed by the Least Significant Difference Test (5% level). The results showed that the type of fungal inoculant applied significantly influences the essential oil content in the wood. The highest essential oil content of 0.7413 mL/kg was obtained by applying Fusarium solani fungal inoculant. The lowest 0.5249 mL/kg content was obtained in the control treatment (without fungi). The chemical components of essential oils are Butanoic acid, 3,7-dimethyl, 2,6-octa diethyl, Hexadecanoic acid, and methyl ester. Citronelol; Beta Citranelol; 3,7-dimethyl-2,6-octadien-l-ol; Citronellol acetate; Citral; Geranyl acetate; 2,6,10_Dodecatrien-1-ol, 3,7,11-trimethyl (Farnesol); Selina-6-en-4-ol; and (-)-Globulol.

##plugins.themes.bootstrap3.article.details##

References
Abdul Malik NA, Kumar IS, Nadarajah K. 2020. Elicitor and receptor molecules: orchestrators of plant defense and immunity. Int J Mol Sci 21(3): 963. DOI: 10.3390/ijms21030963.
Adnyana IM, Mega IM, Adi IGPR. 2022. Content of essential oils as raw materials for medicine from agarwood plants (Gyrinops versteegii) in various soil conditions. Agrotrop: J Agric Sci 12(1): 26-36. DOI: 10.24843/AJoAS.2022.v12.i01.p03
Andriani AASPR, Arjana IGM, Kartini L, Selangga DGW, Rakibe I. 2022. The control of pathogenic fungi with Trichoderma in Banjar Pinge, Tabanan of Bali Province. Asian J Appl Res Com Develop Empower 6(1): 6-10. DOI: 10.29165/ajarcde.v6i1.82.
Anggraini FD, Abidah SN, Rahayu EP, Nisa F. 2022. Effect of aromatherapy blend essential oils (lemongrass and lemon) on sleep quality in pregnant women’s third trimester. Bali Med J 11(3): 1099-1102.
Antonopoulou M, Compton J, Perry LS, Al-Mubarak R. 2010. The trade and use of agarwood (Oudh) in the United Arab Emirates. Petaling Jaya, Selangor, Malaysia: TRAFFIC Southeast Asia.
Aris A, Mohd Zainudin NAI, Ibrahim MH. 2023. Growth and photosynthetic performance of Fusarium solani infected Cucumis sativus L. treated with Trichoderma asperellum. J Taibah Univ Sci 17(1): 2161292 DOI: 10.1080/16583655.2022.2161292.
Auri A, Faridah E, Sumardi, Hardiwinoto S. 2021. The effect of crown pruning and induction of Acremonium sp. On agarwood formation in Gyrinops caudata in West Papua, Indonesia. Biodiversitas 22: 2604-2611. DOI: 10.13057/biodiv/d220707.
Batubara R, Wirjosentono B, Siregar AH, Harahap U, Tamrin. 2021. Bioactive compounds of ethanol extract from agarwood leaves (Aquilaria malaccensis) and antimicrobial activity against bacteria and fungi growing on the skin. Biodiversitas 22(5): 2884-2890. DOI: 10.13057/biodiv/d220553.
Bimantio MP, Wardoyo ADH. 2020. Sensitivity and feasibility analysis of citronella oil business. Soca 14(2): 313-324. DOI: 10.24843/SOCA.2020.v14.i02.p11.
Chen Y, Yan T, Zhang Y, Wang Q, Li G. 2020. Characterization of the incense ingredients of cultivated grafting Kynam by TG-FTIR and HS-GC-MS. Fitoterapia 142:104493. DOI: 10.1016/j.fitote.2020.104493.
Ekwomadu TI, Akinola SA, Mwanza M. 2021. Fusarium Mycotoxins, their metabolites (free, emerging, and masked), food safety concerns, and health impacts. Int J Environ Res Public Health 18(22): 11741. DOI: 10.3390/ijerph182211741.
Faizal A, Azar AWP, Turjaman M, Esyanti RR. 2020. Fusarium solani induces the formation of agarwood in Gyrinops versteegii (Gilg.) Domke branches. Symbiosis 81: 15–23. DOI: 10.1007/s13199-020-00677-w.
Humbal A, Pathak B. 2023. Influence of exogenous elicitors on the production of secondary metabolite in plants: A review (“VSI: secondary metabolites”). Plant Stress 8: 100166. DOI: 10.1016/j.stress.2023.100166.
Janaviciene S, Venslovas E, Kadziene G, Matelioniene N, Berzina Z, Bartkevics V, Suproniene S. 2023. Diversity of mycotoxins produced by Fusarium strains infecting weeds. Toxins 15(7): 420. DOI: 10.3390/toxins15070420.
Jayaraman S, Mohamed R. 2015. Crude extract of Trichoderma elicits agarwood substances in cell suspension culture of the tropical tree, Aquilaria malaccensis Lam. Turk J Agric For 39: 163-173. DOI: 10.3906/tar-1404-63.
Jiang H, Wang X. 2023. Biosynthesis of monoterpenoid and sesquiterpenoid as natural flavors and fragrances. Biotechnol Adv 65: 108151. DOI: 10.1016/j.biotechadv.2023.108151.
Jong PL, Tsan P, Mohamed R. 2014. Gas chromatography-mass spectrometry analysis of agarwood extracts from mature and juvenile Aquilaria malaccensis. Int J Agric Biol 16:644–648.
Liu Y, Chen H, Yang Y, Zhang Z, Wei J, Meng H, Chen W, Feng J, Gan B, Chen X, Gao Z, Huang J, Chen B, Chen H. 2013. Whole-tree agarwood-inducing technique: an efficient novel technique for producing high-quality agarwood in cultivated Aquilaria sinensis trees. Molecules 18(3): 3086-3106. DOI: 10.3390/molecules18033086.
Lukman DD, Siregar UJ, Turjaman M, Sudarsono. 2023. Isolation and molecular identification of agarwood-inducing fungi and their virulence test using Aquilaria sp. seedlings. Biodiversitas 24: 140-148. DOI: 10.13057/biodiv/d240118.
Mega IM, Suanda DK, Kasniari DN, Susrama IGK. 2015. Agarwood producing fungal inoculant formulation in ketimunan tree (Gyrinops versteegii Domke.). Int J Biosci Biotech 3(1): 22-27.
Mega IM, Kartini NL. 2020. Identification of agarwood sapwood chemical components from fungal inoculation results on Gyrinops versteegii (Gilg.) Domke plants. Int J Biosci Biotech 8(1): 40-49. DOI: 10.24843/ijbb.2020.v08.i01.
Mega IM, Nuarsa IW. 2019. Effect of fungal inoculation to resin content on gaharu plants (Gyrinops versteegii (Gilg.) Domke). Int J Environ Geosci 3(1): 10-16. DOI: 10.24843/ijeg.2019.v03.i01.p02.
Mega IM, Rai IN, Adnyana IM, Sudana IM, Kartin NL. 2020. Identification of three isolate fungal to produce agarwood sapwood on Gyrinops versteegii (Gilg.) Domke plant by molecular analysis. Int J Res Eng Sci 8(9):46-53.
Mega IM, Supadma AAN. 2019. Application of gaharu-c formulation (organic and inorganic) fertilizer on agarwood plant at specific location in tabanan regency. Int J Biosci Biotech 6(2): 140-147. DOI: 10.24843/IJBB.2019.v06.i02.p06.
Mohamed R, Jong PL and Kamziah AK. 2014. Fungal inoculation induces agarwood in young Aquilaria malaccensis trees in the nursery. J Forestry Research 25: 201-204. DOI: 10.1007/s11676-013-0395-0.
Naranjo-Ortiz MA, Gabaldón T. 2019. Fungal evolution: major ecological adaptations and evolutionary transitions. Biol Rev Camb Philos Soc 94(4): 1443-1476. DOI: 10.1111/brv.12510.
Ngadiran S, Baba S, Nor NFA, Yahayu M, Muhamad MF, Kushairi AKA, Zaidel DNA, Muhamad II. 2023. The induction techniques of resinous agarwood formation: A review. Bioresour Technol Rep 21: 101337. DOI: 10.1016/j.biteb.2023.101337.
Pasaribu G, Winarni I, Gusti REP, Maharani R, Fernandes A, Harianja AH, Saragih GS, Turjaman M, Tampubolon AP, Kuspradini H, Lukmandaru G, Njurumana GN, Sukito A, Aswandi A, Kholibrina CR. 2021. Current challenges and prospects of Indonesian non-timber forest products (NTFPs): a review. Forests 12(12): 1743. DOI: 10.3390/f12121743.
Perincherry L, Lalak-Ka?czugowska J, St?pie? ?. 2019. Fusarium-produced mycotoxins in plant-pathogen interactions. Toxins 11(11): 664. DOI: 10.3390/toxins11110664.
Piacentini KC, Rocha LO, Savi GD, Carnielli-Queiroz L, De Carvalho Fontes L, Correa B. 2019. Assessment of toxigenic Fusarium species and their mycotoxins in brewing barley grains. Toxins (Basel) 11(1):31. DOI: 10.3390/toxins11010031.
Putri AL. 2011. Studies on Fusarium sp. and Agarwood Trees (Aquilaria sp.) Interaction by Cytological Approach. [Thesis]. IPB University, Bogor. [Indonesian]
Putri N, Karlinasari L, Turjaman M, Wahyudi I, Nandika D. 2017. Evaluation of incense-resinous wood formation in agarwood (Aquilaria malaccensis Lam.) using sonic tomography. Agr Nat Resour 51(2): 84-90. DOI: 10.1016/j.anres.2016.08.009.
Selangga DGW, Listihani L. 2021. Screening of endophytic bacteria isolated from Mimosa pudica in Bali island. Sustain Envir Agric Sci 5(1): 50-57. DOI: 10.22225/seas.5.1.3303.50-57.
Sen S, Dehingia M, Talukdar NC, Khan M. 2017. Chemometric analysis reveals links in the formation of fragrant bio-molecules during agarwood (Aquilaria malaccensis) and fungal interactions. Sci Rep 7: 44406. DOI: 10.1038/srep44406.
Shivanand P, Arbie NF, Krishnamoorthy S, Ahmad N. 2022. Agarwood-the fragrant molecules of a wounded tree. Molecules 27(11): 3386. DOI: 10.3390/molecules27113386.
Subasinghe U, Hettiarachchi D. 2013. Agarwood resin production and resin quality of Gyrinops walla Gaertn. Int J Agr Sci 3: 357–362.
Triwidodo H, Listihani L, Selangga DGW. 2021. Isolation of endophytic fungi in rice plants and their potential as plant growth promoters. Agrovigor: Jurnal Agroekoteknologi 14(2): 109-115. [Indonesian]
Yan T, Hu Z, Chen Y, Yang S, Zhang P, Hong Z, Li G. 2023. The key odor-active components differed in cultured agarwood from two germplasms of Aquilaria. sinensis trees. Ind Crops Prod 194: 116185. DOI: 10.1016/j.indcrop.2022.116185.
Yang L, Yang JL, Dong WH, Wang YL, Zeng J, Yuan JZ, Wang H, Mei WL, Dai HF. 2021. The characteristic fragrant sesquiterpenes and 2-(2-phenylethyl) chromones in wild and cultivated "Qi-Nan" agarwood. Molecules 26(2): 436. DOI: 10.3390/molecules26020436.
Yusoff ZM, Ismail N, Nordin SA. 2024. Dataset for five recent years (2019 - 2023) agarwood essential oil research trends: A bibliometric analysis. Data Brief 54: 110310. DOI: 10.1016/j.dib.2024.110310.
Zhang Z, Xiang-Zhao M, Ran J, Gao M, Li NX, Ma YM, Sun Y, Li Y. 2022. Fusarium oxysporum infection-induced formation of agarwood (FOIFA): A rapid and efficient method for inducing the production of high quality agarwood. PLoS One 17(11): e0277136. DOI: 10.1371/journal.pone.0277136.