Species diversity of aquatic plants in Anggerper Swamp in Merauke District, South Papua Province, Indonesia

##plugins.themes.bootstrap3.article.main##

SENDY LELY MERLY
ROSA D. PANGARIBUAN
https://orcid.org/0009-0005-6780-7540
YAKOBUS ERIKSON KANDO
LINDON R. PANE
https://orcid.org/0009-0007-2009-0655
JEREMIAS R. TUHUMENA
https://orcid.org/0009-0007-2009-0655

Abstract

Abstract. Merly SL, Pangaribuan RD, Kando YE, Pane LR, Tuhumena JR. 2024. Species diversity of aquatic plants in Anggerper Swamp in Merauke District, South Papua Province, Indonesia. Biodiversitas 25: 4712-4721. The aquatic plants in Anggerper Swamp, Merauke District, South Papua Province, Indonesia have never been studied, causing the development of their potential is still insufficient. This research aimed to identify species diversity of aquatic plants, through a species identification approach, Shannon-Weaver Species Diversity Index (H’), Evenness Index (E), Dominance Index (D), and Important Value Index (IVI). Two methods used in this study are cruising survey and purposive sampling method using transect quadrant. There are two research stations with 120 quadrants measuring 1 x 1m. This study successfully identified 14 aquatic plant species from 9 families. Moreover, the majority of these aquatic plants are known as emergent and introduced plants. In Station I, total individuals reached 6,531 with 10 species and in Station II reached 2,576 individuals with 12 species. The diversity index for both stations tends to moderate, 1.92 in Station I and 2.53 in Station II, successively. The evenness index is stable with high uniformity, where Station I is 0.83 and Station II is 0.95, respectively. The dominance index for both stations indicates low dominance (0.21 in Station I and 0.10 in Station II). The highest aquatic plants’ IVI belongs to Nymphaea nouchali (65.66%) and Urochloa mutica (63.16%).

##plugins.themes.bootstrap3.article.details##

References
Alahuhta J, Kosten S, Akasaka M et al. 2017. Global variation in the beta diversity of lake macrophytes is driven by environmental heterogeneity rather than latitude. J Biogeogr 44 (8): 1758-1769. DOI: 10.1111/jbi.12978.
Ali HH, Fayed MIA, Lazim II. 2022. Use of aquatic plants in removing pollutants and treating the wastewater: A review. J Glob Innov Agric Sci 10 (2): 61-70. DOI: 10.22194/JGIAS/10.985.
Ara N, Jamil S. 2020. Study of frequency, density and abundance of selected invasive macrophytes and determination of importance value index of these plants in an abandoned pond of Madhubani. Intl J Exch Knowl 6 (1): 1-9.
Bezabih B, Mosissa T. 2017. Review on distribution, importance, threats and consequences of wetland degradation in Ethiopia. Intl J Water Res Environ Eng 9 (3): 64-71. DOI: 10.5897/IJWREE2016.0697.
Bolpagni R, Laini A, Stanzani C, Chiarucci A. 2018. Aquatic plant diversity in Italy: Distribution, drivers and strategic conservation actions. Front Plant Sci 9: 116. DOI: 10.3389/fpls.2018.00116.
Boyden JM. 2015. Remote Sensing Applications: Understanding the Landscape Ecology of Invasive Para Grass (Urochloa mutica) on Monsoonal Wetlands, Kakadu National Park, Australia. [Thesis]. Charles Darwin University, Brinkin. DOI: 10.25913/5ea27f5e5d016.
BPS. 2023. Merauke District in Figures. Statistic of Merauke District. https://meraukekab.bps.go.id. [Indonesian]
Brower JE, Zar JH, von Ende C. 1990. Field and Laboratory Methods for General Ecology. Third Edition. W.C. Brown Publisher, New York.
Campbell CL, Bruck RI, Sinn JP, Martin SB. 1988. Influence of acidity level in simulated rai non disease progress in four plant pathosystems. Environ Pollut 53 (1-4): 219-234. DOI: 10.1016/0269-7491(88)90036-x.
Ceschin S, Bellini A, Scalici M. 2021. Aquatic plants and ecotoxicological assessment in freshwater ecosystems: A review. Environ Sci Pollut Res Intl 28 (5): 4975-4988. DOI: 10.1007/s11356-020-11496-3.
Dharmono, Mahrudin, Irianti R, Fajeriadi H. 2022. Aquatic plants as niche for lay eggs and raising juveniles by freshwater fish in three swamp habitats in South Kalimantan, Indonesia. Biodiversitas 23 (3): 1520-1526. DOI: 10.13057/biodiv/d230341.
Du W, Li Z, Zhang Z, Jin Q, Chen X, Jiang S. 2017. Composition and biomass of aquatic vegetation in the Poyang Lake, China. Scientifica 2017: 8742480. DOI: 10.1155/2017/8742480.
Eisemann E, Thomas C, Balazik M, Acevedo-Mackey D, Altman S. 2021. Environmental factors affecting coastal and estuarine Submerged Aquatic Vegetation (SAV). Final Report Ecosystem Management Restoration and Research Program (EMRRP). Environmental Laboratory US Army Engineer Research and Development Center, Vicksburg. DOI: 10.21079/11681/42185.
English SA, Baker VJ, Wilkinson CR. 1994. Survey Manual for Tropical Marine Resources. Australian Institute of Marine Science, Townsville.
Gao Y, Gao J, Wang J, Wang S, Li Q, Zhai S, Zhou Y. 2017. Estimating the biomass of unevenly distributed aquatic vegetation in a lake using the normalized water-adjusted vegetation index and scale transformation method. Sci Total Environ 601-602: 998-1007. DOI: 10.1016/j.scitotenv.2017.05.163.
Gettys LA, Haller WT, Petty DG. 2014. Biology and Control of Aquatic Plants. A Best Management Practices Handbook. Third Edition. Aquatic Ecosystem Restoration Foundation, Marietta, GA.
Gibbons R. 1986. The World of Still Water. Readers Digest, New York.
Gopal B. 2016. Should ‘wetland’ cover all aquatic ecosystems and do macrophytes make a difference to their ecosystem services? Folia Geobot 51: 209-226. DOI: 10.1007/s12224-016-9248-x.
Guruge S, Yakandawala D, Yakandawala K. 2017. A taxonomic synopsis of Nymphaea nouchali Burm. f. and infraspecific taxa. J Natl Sci Found Sri Lanka 45 (3): 307-318. DOI: 10.4038/jnsfsr.v45i3.8194.
Heriyanto NM, Subiandono E. 2016. The role of mangrove biomass in storing carbon in Kubu Raya, West Kalimantan. Jurnal Analisis Kebijakan 13 (1): 1-12. DOI: 10.20886/jakk.2016.13.1.1-12. [Indonesian]
Huang X, Xu X, Guan B, Liu S, Xie H, Li Q, Li K. 2020. Transformation of aquatic plant diversity in an environmentally sensitive area, the Lake Taihu drainage basin. Front Plant Sci 11: 513788. DOI: 10.3389/fpls.2020.513788.
Jama A, Widiastuti DP, Gafur S, Davis JG. 2023. Azolla biofertilizer is an effective replacement for urea fertilizer in vegetable crops. Sustainability 15 (7): 6045. DOI: 10.3390/su15076045.
Khadka A, Koirala U. 2021. Ecology of Nymphoides indica (L.) Kuntze in Kashyap Lake, Kaski District, Nepal. Integrating Biological Resources for Prosperity. Botanical Society of Nepal, Nepal Biological Society and Department of Plant Resources, Kathmandu.
Khan A, Siddiqui A, Jamal A. 2019. Gule nilofer (Nymphaea alba) an influential drug in unani medicine: A review with immence therapeutic potential and phyto-pharmacological perspective. Intl J Adv Innov Res 6 (1): 77-83.
Kurniawan R, Paramita IGAAP. 2020. List of aquatic plants at several priority lakes for conservation in Indonesia. IOP Conf Ser Earth Environ Sci 5351: 012055. DOI: 10.1088/1755-1315/535/1/012055.
Larridon I, Tanaka N, Liang Y et al. 2019. First molecular phylogenetic insights into the evolution of Eriocaulon (Eriocaulaceae, Poales). J Plant Res 132 (5): 589-600. DOI: 10.1007/s10265-019-01129-3.
Li K, Wang L, Li Z, Xie Y, Wang X, Fang Q. 2017. Exploring the spatial-seasonal dynamics of water quality, submerged aquatic plants and their influencing factors in different areas of a lake. Water 9 (9): 707. DOI: 10.3390/w9090707.
Li Y, Sylvester SP, Li M, Zhang C, Li X, Duan Y, Wang X. 2019. The complete plastid genome of Magnolia zenii and genetic comparison to Magnoliaceae species. Molecules 24 (2): 261. DOI: 10.3390/molecules24020261.
Lisdayanti L, Hikmat A, Istomo I. 2016. Floristic composition and vegetation diversity of Seasonal Swamp Forest, Rimbo Tujuh Danau Riau. Jurnal Penelitian Hutan dan Konservasi Alam 13 (1): 15-28. DOI: 10.20886/jphka.2016.13.1.15-28. [Indonesian]
Merly SL, Pangaribuan RD, Ndawi BM. 2023. The community structure of aquatic plants in Mayo Swamp, Kurik District, South Papua Province. Agricola 13 (2): 110-121. DOI: 10.35724/ag.v13i2.5598. [Indonesian]
Merly SL, Saleky D. 2021. DNA barcoding of gastropods Terebralia semistriata (Mörch, 1852 (Potamididae: Gastropoda). IOP Conf Ser Earth Environ Sci 805: 012011. DOI: 10.1088/1755-1315/805/1/012011.
Muthukumaran M. 2022. Aquatic plant remediation to control pollution. In: Kumar S, Hashmi MZ (eds.) Biological Approaches to Controlling Pollutants. Elsevier Inc, Cambridge. DOI: 10.1016/B978-0-12-824316-9.00004-5.
Pancho JV, Soerjani M. 1978. Aquatic Weeds of Southeast Asia. National Publication Cooperative, Quezon City.
Paramitha IGAAP, Kurniawan R. 2017. Composition of aquatic plants and riparian plants in Lake Sentani, Papua Province. Oseanologi dan Limnologi di Indonesia 2 (2): 33-48. DOI: 10.14203/oldi.2017.v2i2.92. [Indonesian]
Patra DK, Pradhan C, Kumar J, Patra HK. 2020. Assessment of chromium phytotoxicity, phytoremediation and tolerance potential of Sesbania sesban and Brachiaria mutica grown on chromite mine overburden dumps and garden soil. Chemosphere 252: 126553. DOI: 10.1016/j.chemosphere.2020.126553.
Pierzcha?a ?, Sierka E. 2020. Do submerged plants improve the water quality in mining subsidence reseirvoirs? Appl Ecol Environ Res 18 (4): 5661-5672. DOI: 10.15666/aeer/1804_56615672.
Prakash S. 2021. Impact of climate change on aquatic ecosystem and its biodiversity: An overview. Intl J Biol Innov 3 (2): 312-317. DOI: 10.46505/IJBI.2021.3210.
Pramono CL, Alyodya DA, Restuti EJ, Meilani F, Sholiqin M, Dewangga A, Yap CK, Setyawan AD. 2024. Invasive and non-invasive macro aquatic plants in the Upper Bengawan Solo River, Indonesia. Intl J Bonorowo Wetlands 14 (1): 37-48. DOI: 10.13057/bonorowo/w140105.
Rezania S, Taib SM, Din MFM, Dahalan FA, Kamyab H. 2016. Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater. J Hazard Mater 318: 587-599. DOI: 10.1016/j.jhazmat.2016.07.053.
Sakihara TS, Fukunaga A, Peyton KA. 2017. Mugilids display distinct trait-mediated patterns with a reinvasion of para grass Urochloa mutica in a tropical estuary. Fishes 2 (2): 7. DOI: 10.3390/fishes2020007.
Sema S. 2019. Study on Several Tropical Grasses Plant in the Land from Dry Land Critical. [Thesis]. Universitas Hassanudin, Makassar. [Indonesian]
Shannon CE, Weaver W. 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana.
Short FT, Kosten S, Morgan PA, Malone S, Moore GE. 2016. Impacts of climate change on submerged and emergent wetland plants. Aquat Bot 135: 3-17. DOI: 10.1016/j.aquabot.2016.06.006.
Souri S. 2020. Identification of aquatic plant species that absorb heavy metals in aquatic ecosystems. J Mar Med 2 (3): 164-170. DOI: 10.30491/2.3.164.
Sumolang C, Rumokoy L, Liwe H, Telleng M, Toar WL. 2020. Application of dry-mix-manure layer on production of Brachiaria mutica cultivated in unrestricted sunlight area. Sci Papers Ser D Anim Sci LXIII (2): 151-156.
Tjitrosoepomo G. 2007. Plant Taxonomy (Spermatophyta). Universitas Gadjah Mada Press, Yogyakarta. [Indonesian]
Ullah S, Ali R, Mahmood S, Riaz MA, Akhtar K. 2020. Differential growth and metal accumulation response of Brachiaria mutica and Leptochloa fusca on cadmium and lead contaminated soil. Soil Sediment Contam Intl J 29 (8): 844-859. DOI: 10.1080/15320383.2020.1777935.
Ullah S, Mahmood S, Ali R, Khan MR, Akhtar K, Depar N. 2021. Comparing chromium phyto-assessment in Brachiaria mutica and Leptochloa fusca growing on chromium polluted soil. Chemosphere 269: 128728. DOI: 10.1016/j.chemosphere.2020.128728.
Valladares F, Laanisto L, Niinemets Ü, Zavala MA. 2016. Shedding light on shade: Ecological perspectives of understorey plant life. Plant Ecol Divers 9 (3): 237-251. DOI: 10.1080/17550874.2016.1210262.
Vorontsova MS. 2022. Revision of some Malagasy forage grass and their relatives within Brachiaria, Echinochloa, Moorochloa, and Urochloa. Candollea 77 (2): 199-236. DOI: 10.15553/c2022v772a7.
Wassens S, Ning N, Hardwick L, Bino G, Maguire J. 2017. Long-term changes in freshwater aquatic plant communities following extreme drought. Hydrobiologia 799: 233-247. DOI: 10.1007/s10750-017-3219-y.
Wohlgemuth D, Solan M, Godbold JA. 2016. Specific arrangements of species dominance can be more influential than evenness in maintaining ecosystem process and function. Sci Rep 6: 39325. DOI: 10.1038/srep39325.
Zhang H, Si Y, Zhao R, Sheng Q, Zhu Z. 2023. Complete chloroplast genome and phylogenetic relationship of Nymphaea nouchali (Nymphaeaceae), a rare species of water lily in China. Gene 858: 147139. DOI: 10.1016/j.gene.2022.147139.
Zhang Y, Jeppesen E, Liu X, Qin B, Shi K, Zhou Y, Thomaz SM, Deng J. 2017. Global loss of aquatic vegetation in lakes. Earth-Sci Rev 173: 259-265. DOI: 10.1016/j.earscirev.2017.08.013.
Zhou Y-D, Xiao K-Y, Chen S-C, Liu X, Wang Q-F, Yan X. 2022. Altitudinal diversity of aquatic plants in the Qinghai?Tibet Plateau. Freshw Biol 67 (4): 709-719. DOI: 10.1111/fwb.13875.