Characterization of four varieties of Prunus L. from the Northern Iraq Region via phytochemical analysis using the GC-MS technique

##plugins.themes.bootstrap3.article.main##

NOOR AL-TALAB
SHAYMAA M. HISHAM
RAGHAD M. ABDULLA

Abstract

Abstract. Al-Talab N, Hisham SM, Abdulla RM. 2024. Characterization of four varieties of Prunus L. from the Northern Iraq Region via phytochemical analysis using the GC-MS technique. Biodiversitas 25: 3712-3719. Prunus L. is a widely distributed fruit-producing plant cultivated since ancient times. Their morphology resembles most of the world's well-known temperate fruit crops, classified as pome and stone. This comprehensive study employed chemical taxonomic indicators to analyze distinct varieties within the Prunus L. genus, focussing specifically on Prunus armeniaca L. (represented by the Sayeb and Canion varieties) and Prunus domestica L. (represented by the Songold and Freedom varieties). The study then isolated and identified the active chemical compounds through Gas Chromatography-Mass Spectrometry (GC-MS) analysis. The findings showed that the Sayeb variety of P. armeniaca was found to have high concentrations of hexadecanoic acid (11.31), dl-phenylephrine (6.08), and 6-Bis-dimethylaminomethyl (3.00). Similarly, the Canyon variety of cultivar of P. armeniaca exhibited high concentrations of eucalyptol (46.35), hexadecanoic acid, methyl ester (13.21), and 11-octadecenoic acid (11.12). (46.35), hexadecanoic acid, methyl ester (13.21), and 11-octadecenoic acid (11.12).(46.35), hexadecanoic acid, methyl ester (13.21), and 11-octadecenoic acid (11.12). The Sungold variety of P. domestica was found to have sixteen compounds, with eucalyptol (40.72), alpha-pinene (9.64), and hexadecanoic acid, methyl ester (8.31) being the major compounds. The Freedom variety of P. domestica was also analyzed, with eucalyptol (50.36), ?-pinene (11.27), and hexadecanoic acid (9.76) identified as the major compounds. These distinct differences in chemical composition and abundance among different compounds provide valuable insights and open up exciting possibilities for their use as distinctive traits to determine diversity in the Prunus genus.

##plugins.themes.bootstrap3.article.details##

References
Alaboo HA, Mohammed MJ. 2023. Phytochemical, antioxidant and anti-cancer properties of Urtica dioica. Intl J Chem Biochem Sci 23 (3): 134-147.
Ali B, Rawal YK, Sidharth, Thayes C. 2022. Nutritional composition, phytochemical screening, antioxidant, GC-MS, and FTIR analysis of methanolic extract of Prunus armeniaca. Arab J Med Aromat Plants 8 (3): 149-169. DOI: 10.48347/IMIST.PRSM/ajmap-v8i3.33827.
Alrashedi HS, Al-Ataie SSK, Banoon SR, Fayed MIA. 2021. Potential role of medicinal plants for the treatment of respiratory viruses: A review. Egypt J Chem 64 (12): 7495-7508. DOI: 10.21608/ejchem.2021.97912.4569.
Altemimi AB, Mohammed MJ, Alkanan ZT, Abdulrahman SH, Allaitha SA, Abedelmaksoud TG, ALKaisy QH, Najm MAA, Cacciola F, Srinivasan PV. 2023. Bioactive compounds of Citrullus colocynthis aerial parts: Characterization and biological properties. Plant Biosyst 157 (6): 1151-1160. DOI: 10.1080/11263504.2023.2257720.
Balkrishan A, Tanwar S, Prajapati UB. 2021. Medicinal and nutritional aspect of genus Prunus L. with phytoetymology. Intl J Unani Integr Med 5 (2): 24-27. DOI: 10.33545/2616454x.2021.v5.i2a.165.
Bassi D, Mignani I, Spinardi A, Tura D. 2016. Peach (Prunus persica (L.) Batsch). In: Simmonds MSJ, Preedy VR (eds). Nutritional Composition of Fruit Cultivars. Academic Press, US. DOI: 10.1016/b978-0-12-408117-8.00023-4.
Bejaoui F, Salas JJ, Nouairi I, Smaoui A, Abdelly C, Martínez-Force E, Youssef NB. 2016. Changes in chloroplast lipid contents and chloroplast ultrastructure in Sulla carnosa and Sulla coronaria leaves under salt stress. J Plant Physiol 198: 32-38. DOI: 10.1016/j.jplph.2016.03.018.
Erdogan-Orhan I, Kartal M. 2011. Insights into research on phytochemistry and biological activities of Prunus armeniaca L. (apricot). Food Res Intl 44 (5): 1238-1243. DOI: 10.1016/j.foodres.2010.11.014.
Fratianni F, Ombra MN, d’Acierno A, Cipriano L, Nazzaro F. 2018. Apricots: Biochemistry and functional properties. Curr Opin Food Sci 19: 23-29. DOI: 10.1016/j.cofs.2017.12.006.
Giligashvili T, Moshiashvili G, Kikalishvili B. 2023. Phytochemical study of lipids of Prunus domestica L. seeds cultivated in Georgia. J Med Plants Stud 11 (2): 1-3. DOI: 10.22271/plants.2023.v11.i2a.1531.
Grisez TJ, Barbour JR, Karrfalt PK. 1974. Prunus L. In: Schopmeyer CS (eds). Seeds of Woody Plants in the United States. SDA, Forest Service. Agriculture Handbook No. 450, US Government Printing Office, Washington DC.
Hernández ML, Sicardo MD, Martínez-Rivas JM. 2016. Differential contribution of endoplasmic reticulum and chloroplast ?-3 fatty acid desaturase genes to the linolenic acid content of olive (Olea europaea) fruit. Plant Cell Physiol 57 (1): 138-151. DOI: 10.1093/pcp/pcv159.
Hölzl G, Dörmann P. 2019. Chloroplast lipids and their biosynthesis. Ann Rev Plant Biol 70: 51-81. DOI: 10.1146/annurev-arplant-050718-100202.
Jiang F, Zhang J, Wang S, Yang L, Luo Y, Gao S, Zhang M, Wu S, Hu S, Sun H, Wang Y. 2019. The apricot (Prunus armeniaca L.) genome elucidates Rosaceae evolution and beta-carotenoid synthesis. Hortic Res 6: 128. DOI: 10.1038/s41438-019-0215-6.
Kishan RK, Shukla A, Singh R. 2022. Proximate analysis, phytochemical screening, total phenolic content and in-vitro antioxidant potential of Prunus domestica L. (Seed coat). Order 15 (1): 239-250. DOI: 10.31788/RJC.2022.1516495.
Manzoor M, Anwar F, Ashraf M, Alkharfy KM. 2012. Physico-chemical characteristics of seed oils extracted from different apricot (Prunus armeniaca L.) varieties from Pakistan. Grasas Aceites 63 (2): 193-201. DOI: 10.3989/gya.095011.
Matteson KC, Langellotto GA. 2009. Bumble bee abundance in New York City community gardens: Implications for urban agriculture. Cities Environ 2 (1): 1-12. DOI: 10.15365/cate.2152009.
Mohammed MJ, Ebraheem HA. 2020. Gas chromatography-mass spectrometry profiling of Pimpinella anisum oils and its antimicrobial and antioxidant activities. Intl J Pharm Qual Assur 11: 257-261. DOI: 10.25258/ijpqa.11.2.12.
Nafis A, Kasrati A , Jamali CA, Custódio L, Vitalini S, Iriti M, Hassani L. 2020. A comparative study of the in vitro antimicrobial and synergistic effect of essential oils from Laurus nobilis L. and Prunus armeniaca L. from Morocco with antimicrobial drugs: New approach for health promoting products. Antibiotics 9 (4): 140. DOI: 10.3390/antibiotics9040140.
Pallas V, Aparicio F, Herranz MC, Amari K, Sanchez-Pina MA, Myrta A, Sanchez-Navarro JA. 2012. Ilarviruses of Prunus spp.: A continued concern for fruit trees. Phytopathology 102 (12): 1108-1120. DOI: 10.1094/phyto-02-12-0023-rvw.
Pavlovi? N, Vidovi? S, Vladi? J, Popovi? L, Moslavac T, Jakobovi? S, Joki? S. 2018. Recovery of tocopherols, amygdalin, and fatty acids from apricot kernel oil: Cold pressing versus supercritical carbon dioxide. Eur J Lipid Sci Technol 120 (11): 1800043. DOI: 10.1002/ejlt.201800043.
Pereira AG, Fraga-Corral M, García-Oliveira P, Jimenez-Lopez C, Lourenço-Lopes C, Carpena M, Otero P, Gullón P, Prieto MA, Simal-Gandara J. 2020. Culinary and nutritional value of edible wild plants from northern Spain rich in phenolic compounds with potential health benefits. Food Funct 11 (10): 8493-8515. DOI: 10.1039/d0fo02147d.
Petri C, Alburquerque N, Faize M, Scorza R, Dardick C. 2018. Current achievements and future directions in genetic engineering of European plum (Prunus domestica L.). Transgenic Res 27 (3): 225-240. DOI: 10.1007/s11248-018-0072-3.
Pintea A, Dulf FV, Bunea A, Socaci SA, Pop EA, Opri?? V-A, Giuffrida D, Cacciola F, Bartolomeo G, Mondello L. 2020. Carotenoids, fatty acids, and volatile compounds in apricot cultivars from Romania - A chemometric approach. Antioxidants 9 (7): 562. DOI: 10.3390/antiox9070562.
Rymbai H, Roy AR, Deshmukh NA, Jha AK, Shimray W, War GF, Ngachan SV. 2016. Analysis study on potential underutilized edible fruit genetic resources of the foothills track of Eastern Himalayas, India. Genet Resour Crop Evol 63: 125-139. DOI: 10.1007/s10722-015-0342-3.
Sharif MN, Warriach AR, Ali MU, Akram MN, Ashfaq F, Raza A. 2015. Proximate composition of apricot (Prunus armeniaca L.) fruit and kernel. Am-Eurasian J Agric Environ Sci 15 (10): 2109-2112. DOI: 10.18782/2582-2845.7429.
Siddiqui SA, Anwar S, Yunusa BM, Nayik GA, Khaneghah AM. 2022. The potential of apricot seed and oil as functional food: Composition, biological properties, health benefits and safety. Food Biosci 51: 102336. DOI: 10.1016/j.fbio.2022.102336.
Sidorova T, Mikhailov R, Pushin A, Miroshnichenko D, Dolgov S. 2019. Agrobacterium-mediated transformation of Russian commercial plum cv. "Startovaya" (Prunus domestica L.) with virus-derived hairpin RNA construct confers durable resistance to PPV infection in mature plants. Front Plant Sci 10: 286. DOI: 10.3389/fpls.2019.00286.
Stryjecka M, Kie?tyka-Dadasiewicz A, Michalak M, Racho? L, G?owacka A. 2019. Chemical composition and antioxidant properties of oils from the seeds of five apricot (Prunus armeniaca L.) cultivars. J Oleo Sci 68 (8): 729-738. DOI: 10.5650/jos.ess19121.
Varesi A, Campagnoli LIM, Carrara A, Pola I, Floris E, Ricevuti G, Chirumbolo S, Pascale A. 2023. Non-enzymatic antioxidants against Alzheimer’s disease: Prevention, diagnosis and therapy. Antioxidants 12 (1): 180. DOI: 10.3390/antiox12010180.
Wang H, Shuai X, Ye S, Zhang R, Wu M, Jiang S, Li Y, Wu D, He J. 2022. Recent advances in developing bitter gourd seed oil: From chemical composition to potential applications. Crit Rev Food Sci Nutr 63 (31): 10678-10690. DOI: 10.1080/10408398.2022.2081961.
Zhi Y, Taylor MC, Campbell PM, Warden AC, Shrestha P, El Tahchy A, Rolland V, Vanhercke T, Petrie JR, White RG, Chen W, Singh SP, Liu Q. 2017. Comparative lipidomics and proteomics of lipid droplets in Chinese tallow's mesocarp and seed tissues (Triadica sebifera). Front Plant Sci 8: 1339. DOI: 10.3389/fpls.2017.01339.
Zhou B, Wang Y, Kang J, Zhong H, Prenzler P. 2016. The quality and volatile profile changes of Longwangmo apricot (Prunus armeniaca L.) kernel oil prepared by different oil-producing processes. Eur J Lipid Sci Technol 118 (2): 236-243. DOI: 10.1002/ejlt.201400545.
Zuriaga E, Romero C, Blanca JM, Badenes ML. 2018. Resistance to Plum Pox Virus (PPV) in apricot (Prunus armeniaca L.) is associated with the down-regulation of two MATHd genes. BMC Plant Biol 18 (1): 25. DOI: 10.1186/s12870-018-1237-1.