Isolation, screening, and molecular characterization using 16S rDNA gene of feather-degrading bacteria isolated from poultry soil in Basrah Province, Iraq

##plugins.themes.bootstrap3.article.main##

NOOR M. AHMED AL-AMERY
NASSIR ABDULLAH ALYOUSIF

Abstract

Abstract. Al-Amery NMA, Alyousif NA. 2024. Isolation, screening, and molecular characterization using 16S rDNA gene of feather-degrading bacteria isolated from poultry soil in Basrah Province, Iraq. Biodiversitas 25: 3217-3226. Bioremediation of feathers based on the production of keratinase enzyme is one of the most promising methods and has gained increasing interest in biotechnology. This study aimed to isolate, identify, and screen the bacteria that can potentially degrade feathers from the soil in Basrah province, Iraq using 16S rDNA gene. Ten soil samples were collected from various poultry fields and 97 bacterial isolates have been isolated from the samples. Seventy-four protease-producing isolates were found among isolates. The highest number of bacterial isolates that were found to be able to break down feathers were B6, E1, F7, M6, and J9 according to the values of keratinase activity were 42.1 U/mL, 29.1 U/mL, 28.8 U/mL, 28.1 U/mL, and 28.1 U/mL, respectively. The isolate B6 was the most promising isolate, because it was the best isolate with a higher value of 42.1 U/mL. Based on the sequencing of the 16S rDNA gene, these 5 isolates were identified as Bacillus amyloliquefaciens, B. subtilis, B. licheniformis, B. subtilis, and B. pumilus, respectively. Eleven bacterial isolates have been reported as new strains and recorded in NCBI GenBank. The current study reported several isolates that have the potential to produce keratinase with different capabilities for the first time in the world.

##plugins.themes.bootstrap3.article.details##

References
Ahmadpour F, Yakhchali B, Musavi MS. 2016. Isolation and identification of a keratinolytic Bacillus cereus and optimization of keratinase production. J Appl Biotechnol Rep 3 (4): 507-512.?
Akhter M, Wal Marzan L, Akter Y, Shimizu K. 2020. Microbial bioremediation of feather waste for keratinase production: An outstanding solution for leather dehairing in tanneries. Microbiol insights 13: 1178636120913280. DOI: 10.1177/117863612091 3280.
Alahyaribeik S, Sharifi SD, Tabandeh F, Honarbakhsh S, Ghazanfari S. 2020. Bioconversion of chicken feather wastes by keratinolytic bacteria. Proc Safety Environ Prot 135: 171-178.? DOI: 10.1016/j.psep.2020.01.014.
Al Khafaji AM, Almansoory AF, Alyousif NA. 2023. Isolation, screening and molecular identification of bioflocculants-producing bacteria. Biodiversitas 24 (8): 4410-4417. DOI: 10.13057/biodiv/d240822.
Almahasheer AA, Mahmoud A, El-Komy H, Alqosaibi AI, Aktar S, AbdulAzeez S, Borgio JF. 2022. Novel feather degrading keratinases from Bacillus cereus group: Biochemical, genetic and bioinformatics analysis. Microorganisms 10: 93.? DOI: 10.3390/microorganisms10010093.
Alshehri WA, Khalel A, Elbanna K, Ahmad I, Abulreesh HH. 2021. Bio-plastic films production from feather waste degradation by keratinolytic bacteria Bacillus cereus. J Pure Appl Microbiol 15 (2): 681-688. DOI: 10.22207/JPAM.15.2.17.
Alyousif NA. 2022. Distribution, occurrence and molecular characterization of Bacillus related species isolated from different soil in Basrah Province, Iraq. Biodiversitas 23 (2): 679-686. DOI: 10.13057/biodiv /d230209.
Bagewadi ZK, Mulla SI, Ninnekar H Z. 2018. Response surface methodology-based optimization of keratinase production from Trichoderma harzianum isolate HZN12 using chicken feather waste and its application in dehairing of hide. J Environ Chem Engin 6 (4): 4828-4839.? DOI: 10.1016/j.jece.2018.07.007.
Barman NC, Zohora FT, Das KC, Mowla MG, Banu NA, Salimullah M, Hashem A. 2017. Production, partial optimization and characterization of keratinase enzyme by Arthrobacter sp. NFH5 isolated from soil samples. AMB Express 7: 181.? DOI: 10.1186/s13568-017-0462-6.
Bohacz J, Korni??owicz-Kowalska T. 2019. Fungal diversity and keratinolytic activity of fungi from lignocellulosic composts with chicken feathers. Proc Biochem 80: 119-128.? DOI: 10.1016/j.procbio.2019.02.012.
Bose A, Pathan S, Pathak K, Keharia H. 2014. Keratinolytic protease production by Bacillus amyloliquefaciens 6B using feather meal as substrate and application of feather hydrolysate as organic nitrogen input for agricultural soil. Waste Biomass Valor 5: 595-605. DOI: 10.1007/s12649-013- 9272-5.
Busse HJ. 2016. Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov. and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus. Intl J Syst Evol Microbiol 66: 9-7. DOI: 10.1099/ijsem.0.000702.
Cheong CW, Lee YS, Ahmad SA, Ooi PT, Phang LY. 2018. Chicken feather valorization by thermal alkaline pretreatment followed by enzymatic hydrolysis for protein-rich hydrolysate production. Waste Manag 79: 658-666.? DOI: 10.1016/j.wasman.2018.08.029.
Dada M, Wakil S. 2021. Conversion of feather to potential feed supplement using keratinase from Bacillus licheniformis-K51. J Appl Sci Environ Sustain 13 (7): 10-31.?
de Paiva DP, de Oliveira SSA, Mazotto AM, Vermelho AB, de Oliveira SS. 2019. Keratinolytic activity of Bacillus subtilis LFB-FIOCRUZ 1266 enhanced by whole-cell mutagenesis. 3 Biotech 9 (1): 2. DOI: 10.1007/s13205-018-1527-1.
Devi CS, Shankar R, Kumar S, Mohanasrinivasan V, Vaishnavi B. 2018. Production of keratinase from a newly isolated feather degrading Bacillus cereus VITSDVM4 from poultry waste. Natl Acad Sci Lett 41: 307-311.? DOI: 10.1007/s40009-018-0664-8.
Emran MA, Ismail SA, Abdel-Fattah AM. 2020. Valorization of feather via the microbial production of multi-applicable keratinolytic enzyme. Biocatal Agric Biotechnol 27: 101674.? DOI: 10.1016/j.bcab.2020.101674.
Foysal MJ, Lisa AK. 2018. Isolation and characterization of Bacillus sp. strain BC01 from soil displaying potent antagonistic activity against plant and fish pathogenic fungi and bacteria. J Genet Eng Biotechnol 16 (2): 387-392. DOI: 10.1016/j.jgeb.2018.01.005.
Gupta VK, Tuohy MG. (eds). 2012. Laboratory Protocols in Fungal Biology: Current Methods in Fungal Biology. Springer, Cham?.
Gurav RG, Mirajkar DB, Savardekar AV, Pisal SM. 2016. Microbial degradation of poultry feather biomass by Klebsiella sp. BTSUK isolated from poultry waste disposal site. Res J Life Sci Bioinform Pharm Chem Sci 1 (6): 279-288.? DOI: 10.26479/2016.0106.01.
Mehta RS, Jholapara RJ, Sawant CS. 2014. Isolation of a novel feather-degrading bacterium and optimization of its cultural conditions for enzyme production. Intl J Pharm Pharm Sci 6 (1): 194-201.?
Miyoshi T, Iwatsuki T, Naganuma T. 2005. Phylogenetic characterization of 16S rRNA gene clones from deep-groundwater microorganisms that pass through 0.2-micrometer-pore-size filters. Appl Environ Microbiol 71: 1084-1088. DOI: 10.1128/AEM.71.2.1084- 1088.2005.
Mohammad AJ, Alyousif NA. 2022. Molecular identification and assessment of bacterial contamination of frozen local and imported meat and chicken in Basrah, Iraq using 16S rDNA gene. Biodiversitas 23: 1598-1604. DOI: 10.13057/biodiv/d230350.
Moridshahi R, Bahreini M, Sharifmoghaddam M, Asoodeh A. 2020. Biochemical characterization of an alkaline surfactant-stable keratinase from a new keratinase producer, Bacillus zhangzhouensis. Extremophiles 24: 693-704. DOI: 10.1007/ s00792-020-01187-9.
Mukhtar H, Ahmad M, Arshad Y. 2019. Isolation and screening of keratinase producing bacteria from soil. Biol Pak 65 (11): 1-6.?
Nnolim NE, Udenigwe CC, Okoh AI, Nwodo UU. 2020. Microbial keratinase: Next generation green catalyst and prospective applications. Front Microbiol 11: 580164.? DOI: 10.3389/fmicb.2020.580164.
Petek B, Vodušek M, Accetto T, Zorec M, Zalar P, Ober?kal J, Marinšek Logar R. 2024. Isolation and characterization of highly active keratinolytic microorganisms with promising potential for waste sheep wool processing. J Mat Cycles Waste Manag 26 (1): 360-372.? DOI: 10.1007/s10163-023-01830-5.
Qian X, Lee S, Soto AM, Chen G. 2018. Regression model to predict the higher heating value of poultry waste from proximate analysis. Resources 7 (3): 39.? DOI: 10.3390/resources7030039.
Sabri SH, Aldeen SB. 2014. Optimum conditions of keratinase production from Bacillus licheniformis. Iraqi J Sci 55 (3A): 1014-1024.
Sah N, Goel A, Omre PK. 2015. Characterization of chicken feather fibre as novel protein fiber for commercial applications.? Natl Acad Agric Sci Rating 33 (4): 3373-3377.
Sharma I, Pranaw K, Soni H, Rawat HK, Kango N. 2022. Parametrically optimized feather degradation by Bacillus velezensis NCIM 5802 and delineation of keratin hydrolysis by multi-scale analysis for poultry waste management. Sci Rep 12: 17118.? DOI: 10.1038/s41598-022-21351-9.
Shen N, Yang M, Xie C, Pan J, Pang K, Zhang H, Wang Y, Jiang M. 2022. Isolation and identification of a feather degrading Bacillus tropicus strain Gxun-17 from marine environment and its enzyme characteristics. BMC Biotechnol 22: 11. DOI: 10.1186/s12896-022-00742-w.
Srivastava B, Khatri M, Singh G, Arya SK. 2019. Microbial keratinases: An overview of biochemical characterization and its eco-friendly approach for industrial applications. J Clean Prod 252: 119847.? DOI: 10.1016/j.jclepro.2019.119847.
Sypka M, Jod?owska I, Bia?kowska AM. 2021. Keratinases as versatile enzymatic tools for sustainable development. Biomolecules 11 (12): 1900. DOI: 10.3390/biom11121900.
Tamreihao K, Mukherjee S, Khunjamayum R, Devi LJ, Asem RS, Ningthoujam DS. 2019. Feather degradation by keratinolytic bacteria and biofertilizing potential for sustainable agricultural production. J Basic Microbiol 59 (1): 4-13. DOI: 10.1002/jobm.201800434. ?
Tanruean K, Chutima R, Chaiyen R, Wittanalai S. 2019. Efficiency of keratinase enzyme producing bacteria isolated from soil of poultry farming for degradation of chicken feather. Life Sci Environ J 20 (1): 19-29.?
Tantamacharik T, Carne A, Shavandi A, Bekhit AEDA. 2022. Keratin as an alternative protein in food and nutrition. In: Bekhit AEDA (eds). Alternative Proteins. CRC Press, Boca Raton. DOI: 10.1201/9780429299834-7.
Tiwary E, Gupta R. 2012. Rapid conversion of chicken feather to feather meal using dimeric keratinase from Bacillus licheniformis ER-15. J Bioprocess Biotech 2: 1000123.? DOI: 10.4172/2155-9821.1000123.
Tork SE, Aly M, Nawar L. 2010. Biochemical and molecular characterization of a new local keratinase producing Pseudomonas sp., MS21. Asian J Biotechnol 2: 1-13.? DOI: 10.3923/ajbkr.2010.1.13.
Ungureanu N, Vl?dut V, Biris SS, Dinc? M, Gheorghi?? NE. 2022. Management of by-products and waste from poultry meat industry. Intl Sym 39: 58-169.
Vaishampayan P, Miyashita M, Ohnishi A, Satomi M, Rooney A, La Duc MT, Venkateswaran K. 2009. Description of Rummeliibacillus stabekisii gen. nov., sp. nov. and reclassification of Bacillus pycnus Nakamura et al. 2002 as Rummeliibacillus pycnus comb. nov. Int J Syst Evol Microbiol 59: 1094-1099.? DOI: 10.1099/ijs.0.006098-0.
Yahya G, Ebada A, Khalaf EM, Mansour B, Nouh NA, Mosbah RA, Saber S, Moustafa M, Negm S, El-Sokkary MMA, El-Baz AM. 2021. Soil-associated Bacillus species: A reservoir of bioactive compounds with potential therapeutic activity against human pathogens. Microorganisms 9: 1131. DOI: 10.3390/ microorganisms9061131.
Yue X-Y, Zhang B, Jiang D-D, Liu Y-J, Niu T-G. 2013. Characterization of a new feather-degrading bacterium from Calotes versicolor feces. Afr J Biotechnol 12: 6738-6744.? DOI: 10.5897/AJB10.2154.
Zilda DS. 2021. Brevibacilus thermoruber: thermophilic bacteria isolated from hot spring with the promising potential as a biomolecule producer. IOP Conf: Ser Earth Environ Sci 743: 012002. DOI: 10.1088/1755-1315/743/1/012002.