Development and validation of novel microsatellite markers of a potentially invasive fern Dicranopteris linearis var. linearis

##plugins.themes.bootstrap3.article.main##

NURSHANARIAH BALKIS KAMARUDIN
https://orcid.org/0000-0001-7646-0060
MUSABBIHAH ABDUL AZIZ
https://orcid.org/0000-0003-4760-8286
AHMAD SOFIMAN OTHMAN
https://orcid.org/0000-0002-4944-4177
RUSLY ROSAZLINA
https://orcid.org/0000-0002-8057-3217

Abstract

Abstract. Kamarudin NB, Aziz MA, Othman AS, Rosazlina R. 2025. Development and validation of novel microsatellite markers of a potentially invasive fern Dicranopteris linearis var. linearis. Biodiversitas 26: 46-54. Dicranopteris linearis is a forked fern native to Peninsular Malaysia. Recently, it has been recognized for its invasive potential in the ecosystem of Peninsular Malaysia due to its abundance, rapid spread, aggressive growth pattern, and competition for resources available to other native plants and crops. Despite its abundance and invasive potential, little is known about the potential domination mechanism and influence of genetic diversity on its establishment. Addressing this knowledge gap requires population genetic analysis, yet the fern has limited genomic information and molecular markers available. Hence, we aimed to develop novel microsatellite markers from D. linearis var. linearis using whole genome sequencing (WGS) data for preliminary population genetic analysis. Our analysis identified 879 simple sequence repeats (SSRs), predominantly trinucleotide repeats (AAC/GTT). Out of 462 primer pairs designed, 20 were randomly selected for validation, leading to eight markers verified as polymorphic across 30 tested individuals from the Batu Ferringhi population. These markers showed a moderate level of genetic variation (Na= 3.5, He= 0.4884) between individuals. Furthermore, these markers achieved successful amplification in six related species with transferability rates between 75% and 100%. The SSR markers developed in this study can be applied for future population-level studies to ascertain factors that may be driving diversity that enables the survival, adaption, and domination of the potentially invasive fern and its related species in the ecosystem of Peninsular Malaysia.

##plugins.themes.bootstrap3.article.details##

References
Aiello D, Ferradini N, Torelli L, Volpi C, Lambalk J, Russi L, Albertini E. 2020. Evaluation of cross-species transferability of SSR markers in Foeniculum vulgare. Plants 9 (2): 175. DOI: 10.3390/plants9020175.
Al-Faifi SA, Migdadi HM, Algamdi SS, Khan MA, Ammar MH, Al-Obeed RS, Al-Thamra MI, El-Harty EH, Jakse J. 2016. Development, characterization and use of genomic SSR markers for assessment of genetic diversity in some Saudi date palm (Phoenix dactylifera L.) cultivars. Electronic J Biotechnol 21: 18-25. DOI: 10.1016/j.ejbt.2016.01.006.
Andrews S, Krueger F, Segonds-Pichon A, Biggins L, Krueger C, Wingett S. 2010. FastQC. A quality control tool for high throughput sequence. Data 370.
Antunes AM, Stival JGN, Targueta CP, de Campos Telles MP, Soares TN. 2022. A pipeline for the development of microsatellite markers using next generation sequencing data. Curr Genomics 23 (3): 175-181. DOI: 10.2174/1389202923666220428101350.
Baharuddin AA, Roosli RA, Zakaria ZA, Tohid SFM. 2021. Dicranopteris linearis: A potential medicinal plant with anticancer properties. Boletín Latinoam Y Del Caribe De Plantas Medicinales Y Aromáticas 20: 28-37. DOI: 10.37360/blackcpma.21.20.1.2.
Beier S, Thiel T, Münch T, Scholz U, Mascher M. 2017. MISA-web: A web server for microsatellite prediction. Bioinformatics 33 (16): 2583-2585. DOI: 10.1093/bioinformatics/btx198.
Bhattarai G, Shi A, Kandel DR, Solís-Gracia N, da Silva JA, Avila CA. 2021. Genome-wide simple sequence repeats (SSR) markers discovered from whole-genome sequence comparisons of multiple spinach accessions. Sci Rep 11: 9999. DOI: 10.1038/s41598-021-89473-0.
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30 (15): 2114-2120. DOI: 10.1093/bioinformatics/btu170.
Chew PC, Christianus A, Zudaidy JM, Ina-Salwany MY, Chong CM, Tan SG. 2021. Microsatellite characterization of Malaysian mahseer (Tor spp.) for improvement of broodstock management and utilization. Animals 11 (9): 2633. DOI: 10.3390/ani11092633.
Clark J, Hidalgo O, Pellicer J, Liu H, Marquardt J, Robert Y, Christenhusz M, Zhang S, Gibby M, Leitch IJ. 2016. Genome evolution of ferns: Evidence for relative stasis of genome size across the fern phylogeny. New Phytologist 210 (3): 1072-1082. DOI: 10.1111/nph.13833.
Dlugosch KM, Parker IM. 2008. Founding events in species invasions: Genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17 (1): 431-449. DOI: 10.1111/j.1365-294X.2007.03538.x.
Doyle JJ, Doyle JL. 1990. Isolation of plant DNA from fresh tissue. Focus 12 (1): 13-15.
Excoffier L, Laval G, Schneider S. 2005. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol Bioinformatics 1: 117693430500100000. DOI: 10.1177/117693430500100003.
Gao Z, Wu J, Liu Z, Wang L, Ren H, Shu Q. 2013. Rapid microsatellite development for tree peony and its implications. BMC Genomics 14: 886. DOI: 10.1186/1471-2164-14-886.
Geetha CM, Siril EA. 2022. Cross-species transferability of genomic SSR markers and genetic diversity among Asparagus racemosus Willd. accessions. Plant Gene 31: 100361. DOI: 10.1016/j.plgene.2022.100361.
Go R, Yen CL, Maideen H, Omar H, Mustafa M, Yusof UK. 2012. The distribution of the ferns Gleicheniaceae in Peninsular Malaysia. Acta Biologica Malaysiana 1 (1): 18-25. DOI: 10.7593/abm/1.1.18.
Gupta YM, Tanasarnpaiboon S, Buddhachat K, Peyachoknagul S, Inthim P, Homchan S. 2020. Development of microsatellite markers for the house cricket, Acheta domesticus (Orthoptera: Gryllidae). Biodiversitas 21 (9): 4094-4099. DOI: 10.13057/biodiv/d210921.
Hanjali? J, Ušanovi? L, Lasi? L, Kalajdži? A, Stroil BK, Ahmi? A, Pojski? N. 2021. ?pplicability of microsatellite loci designed for cosmopolitan species for the investigation of endemic species: A case study of Silene sendtneri Boiss. Glasnik Šumarskog Fakulteta Univerziteta u Banjoj Luci 31: 55-63. DOI: 10.7251/GSF2131055H.
He ZZ, Stotz GC, Liu X, Liu JJ, Wang YG, Yang J, Li LF, Zhang WJ, Nan P, Song ZP. 2024. A global synthesis of the patterns of genetic diversity in endangered and invasive plants. Biol Conserv 291: 110473. DOI: 10.1016/j.biocon.2024.110473.
Hernández-Espinosa R, González-Astorga J, Espinosa de los Monteros A, Cabrera-Toledo D, Gallego-Fernández JB. 2020. Transferability of microsatellite markers developed in Oenothera spp. to the invasive species Oenothera drummondii Hook. (Onagraceae). Diversity 12 (10): 387. DOI: 10.3390/d12100387.
Hosseinzadeh-Colagar A, Haghighatnia MJ, Amiri Z, Mohadjerani M, Tafrihi M. 2016. Microsatellite (SSR) amplification by PCR usually led to polymorphic bands: Evidence which shows replication slippage occurs in extend or nascent DNA strands. Mol Biol Res Commun 5 (3): 167-174.
Jasim JH, Othman AS, Nordin FA, Talkah NSM. 2024. High-quality genomic DNA extraction methods of Yellow Spathoglottis Blume complex for next-generation sequencing. Biodiversitas 25 (2): 654-663. DOI: 10.13057/biodiv/d250224.
Jewell E, Robinson A, Savage D, Erwin T, Love CG, Lim GAC, Li X, Batley J, Spangenberg GC, Edwards D. 2006. SSRPrimer and SSR taxonomy tree: Biome SSR discovery. Nucleic Acids Res 34 (2): 656-659. DOI: 10.1093/nar/gkl083.
Jones A, Stanley D, Ferguson S, Schwessinger B, Borevitz J, Warthmann N. 2023. Cost-conscious generation of multiplexed short-read DNA libraries for whole-genome sequencing. PLoS One 18 (1): e0280004. DOI: 10.1371/journal.pone.0280004.
Jungová M, Jurasová VM, ?epková PH, Svobodová LL, Svoboda P, Hejcman M. 2023. Origin and genetic variability of populations of the invasive plant Rumex alpinus L. in the Giant (Krkonoše) Mountains. Ecol Evol 13 (6): e10145. DOI: 10.1002/ece3.10145.
Kajitani R, Yoshimura D, Okuno M, Minakuchi Y, Kagoshima H, Fujiyama A, Kubokawa K, Kohara Y, Toyoda A, Itoh T. 2019. Platanus-allee is a de novo haplotype assembler enabling a comprehensive access to divergent heterozygous regions. Nat Commun 10 (1): 1702. DOI: 10.1038/s41467-019-09575-2. 274.
Kalinowski ST, Taper ML, Marshall TC. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16 (5): 1099-1106. DOI: 10.1111/j.1365-294X.2007.03089.x.
Karaca M. 2015. Microsatellites for genetic and taxonomic research on thyme (Thymus L.). Turkish J Biol 39: 147-159. DOI: 10.3906/biy- 1406-20.
Kato-Noguchi H. 2015. Involvement of allelopathy in the formation of monospecific colonies of ferns. Nat Prod Commun 10 (5): 811-814. DOI: 10.1177/1934578X1501000526.
Kim J, Lim J, Kim M, Lee YK. 2024. Whole-genome sequencing of 13 Arctic plants and draft genomes of Oxyria digyna and Cochlearia groenlandica. Sci Data 11: 793. DOI: 10.1038/s41597-024-03569-6.
Kim S, Kim H, Cho M, Kim C, Kim S. 2020. Development and characterization of 17 microsatellite markers for Sonchus oleraceus. Appl Plant Sci 8 (3): e11329. DOI: 10.1002/aps3.11329.
Leitch IJ. 2012. Plant Genome Diversity Volume 2: Physical Structure, Behaviour and Evolution of Plant Genomes. In: Barker MS. Karyotype and genome evolution in pteridophytes. Springer Science and Business Media, Vienna.
Li-ting LIU, Qiang WEN, Xiao-chun H, Qi-jing LIU. 2016. De novo sequencing and characterization of juvenile sporophyte transcriptome of a fern, Dicranopteris dichotoma. For Res 29 (4): 500-507.
Lima LV, Sousa S, Almeida TE, Salino A. 2021. State of the art in cytogenetics, insights into chromosome number evolution, and new C-value reports for the fern family Gleicheniaceae. Anais Da Academia Brasileira de Ciências 93: e20201881. DOI: 10.1590/0001-3765202120201881.
Liyanage R, Kariyawasam T, Wijewickrama T, Bandara J, Madawala S. 2021. Some edaphic properties in Dicranopteris linearis dominated landscape: A perspective for restoration success. Ceylon J Sci 50 (1): 17-18. DOI: 10.4038/cjs.v50i1.7843.
Mai NT, Nguyen NH, Tsubota T, Shinogi Y, Dultz S, Nguyen MN. 2019. Fern Dicranopteris linearis-derived biochars: Adjusting surface properties by direct processing of the silica phase. Colloids Surf A: Physicochem Eng Aspects 583: 123937. DOI: 10.1016/j.colsurfa.2019.123937.
Marpaung AA, Susandarini R. 2021. Variation on morphology and spore characters of Dicranopteris and Sticherus (Gleicheniaceae) from Rokan Hulu District, Riau, Indonesia. Biodiversitas 22 (10): 4475-4486. DOI: 10.13057/biodiv/d221041.
Marpaung AA, Susandarini R. 2022. Genetic diversity of Dicranopteris and Sticherus from Rokan Hulu, Riau based on ISSR marker. J Trop Biodiver Biotechnol 7 (1): 66552. DOI: 10.22146/jtbb.66552.
Matheson P, McGaughran A. 2022. Genomic data is missing for many highly invasive species, restricting our preparedness for escalating incursion rates. Sci Rep 12: 13987. DOI: 0.1038/s41598-022-17937-y.
Mohd Rodzik FF, Sudirman NA, Teh CK, Ong AL, Heng HY, Yaakop S, Mohd-Assaad N, Ong-Abdullah M, Ata N, Amit S. 2023. Development of nuclear DNA markers for applications in genetic diversity study of oil palm-pollinating weevil populations. Insects 14 (2): 157. DOI: 10.3390/insects14020157.
Pelosi JA, Sessa EB. 2021. From genomes to populations: A meta-analysis and review of fern population genetics. Intl J Plant Sci 182 (5): 325-343. DOI: 10.1086/713442.
PPG I. 2016. A community-derived classification for extant lycophytes and ferns. J Syst Evol 54 (6): 563-603. DOI: 10.1111/jse.12229.
Ren H, Wei Z, Zhou B, Chen X, Gao Q, Zhang Z. 2023. Molecular marker development and genetic diversity exploration in Medicago polymorpha. PeerJ 11: e14698. DOI: 10.7717/peerj.14698.
Russell AE, Raich JW, Vitousek PM. 1998. The ecology of the climbing fern Dicranopteris linearis on windward Mauna Loa, Hawaii. J Ecol 86: 765-779. DOI: 10.1046/j.1365-2745.1998.8650765.x.
Russell AE, Ranker TA, Gemmill CEC, Farrar DR. 1999. Patterns of clonal diversity in Dicranopteris linearis on Mauna Loa, Hawaii 1. Biotropica 31: 449-459. DOI: 10.1111/j.1744-7429.1999.tb00387.x.
Ruzlan KABC, Hamdani MSA. 2020. Occurrence and management of resistant weed species in FGV plantation in Malaysia: A review. Plant Archives 20 (1): 3057-3062.
Sapkota S, Boggess SL, Trigiano RN, Klingeman WE, Hadziabdic D, Coyle DR, Olukolu BA, Kuster RD, Nowicki M. 2021. Microsatellite loci reveal genetic diversity of Asian callery pear (Pyrus calleryana) in the species native range and in the North American cultivars. Life 11 (6): 531. DOI: 10.3390/life11060531.
Taheri S, Lee AT, Yusop MR, Hanafi MM, Sahebi M, Azizi P, Shamshiri RR. 2018. Mining and development of novel SSR markers using next generation sequencing (NGS) data in plants. Molecules 23 (2): 399. DOI: 10.3390/molecules23020399.
Takeshige R, Imai N, Aoyagi R, Sawada Y, Ong R, Kitayama K. 2023. Influences of fern and vine coverage on the above-ground biomass recovery in a Bornean logged-over degraded secondary forest. J For Res 28: 260-270. DOI: 10.1080/13416979.2023.2187682.
Unamba CIN, Nag A, Sharma RK. 2015. Next generation sequencing technologies: The doorway to the unexplored genomics of non-model plants. Front Plant Sci 6: 164495. DOI: 10.3389/fpls.2015.01074.
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. 2012. Primer3-new capabilities and interfaces. Nucleic Acids Res 40 (15): e115-e115. DOI: 10.1093/nar/gks596.
Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. 2004. MICRO?CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4 (3): 535-538. DOI: 10.1111/j.1471-8286.2004.00684.x.
Vats S, Kumar V, Mandlik R, Patil G, Sonah H, Roy J, Sharma TR, Deshmukh R. 2023. Reference guided de novo genome assembly of transformation pliable Solanum lycopersicum cv. Pusa Ruby. Genes 14 (3): 570. DOI: 10.3390/genes14030570.
Victoria FC, da Maia LC, de Oliveira AC. 2011. In silico comparative analysis of SSR markers in plants. BMC Plant Biol 11: 15. DOI: 10.1186/1471-2229-11-15.
Vieira MLC, Santini L, Diniz AL, Munhoz CF. 2016. Microsatellite markers: What they mean and why they are so useful. Genet Mol Biol 39 (3): 312-328. DOI: 10.1590/1678-4685-GMB-2016-0027.
Wang H, Lei Y, Yan L, Wan L, Cai Y, Yang Z, LJ, Zhang X, Xu C, Liao B. 2018. Development and validation of simple sequence repeat markers from Arachis hypogaea transcript sequences. Crop J 6 (2): 172-180. DOI: 10.1016/j.cj.2017.09.007.
Wang LX, Elbaidouri M, Abernathy B, Chen HL, Wang SH, Lee SH, Jackson SA, Cheng XZ. 2015. Distribution and analysis of SSR in mung bean (Vigna radiata L.) genome based on an SSR-enriched library. Mol Breed 35: 1-10. DOI: 10.1007/s11032-015-0259-8.
Ward SM, Gaskin JF, Wilson LM. 2008. Ecological genetics of plant invasion: What do we know?. Invasive Plant Sci Manag 1 (1): 98-109. DOI: 10.1614/IPSM-07-022.1.
Wei Z, Xia Z, Shu J, Shang H, Maxwell SJ, Chen L, Zhou X, Xi W, Adjie B, Yuan Q, Cao J, Yan Y. 2022. Phylogeny and taxonomy on cryptic species of forked ferns of Asia. Front Plant Sci 12: 748562. DOI: 10.3389/fpls.2021.748562.
Wu CA, Hakkenberg AD, Beauchamp VB. 2018. Characterization of polymorphic microsatellite loci for invasive wavyleaf basketgrass, Oplismenus undulatifolius (Poaceae). Appl Plant Sci 6 (1): e1016. DOI: 10.1002/aps3.1016.
Xiong Y, Lei X, Bai S, Xiong Y, Liu W, Wu W, Yu Q, Dong Z, Yang J, Ma X. 2021. Genomic survey sequencing, development and characterization of single-and multi-locus genomic SSR markers of Elymus sibiricus L. BMC Plant Biol 21: 3. DOI: 10.1186/s12870-020-02770-0.
Yang L, Huang Y, Lima LV, Sun Z, Liu M, Wang J, Liu N, Ren H. 2021. Corrigendum: Rethinking the ecosystem functions of Dicranopteris, a widespread genus of ferns. Front Plant Sci 11: 581513. DOI: 10.3389/fpls.2020.581513.
Zakaria R, Akomolafe GF. 2019. Taxonomic diversity of ferns of two recreational forests in Kedah, Malaysia. Malaysian J Sci 38 (3): 1-11 DOI: 10.22452/mjs.vol38no3.1.
Zhao YM, Zhou T, Li ZH, Zhao GF. 2015. Characterization of global transcriptome using illumina paired-end sequencing and development of EST-SSR markers in two species of Gynostemma (Cucurbitaceae). Molecules 20: 21214-21231. DOI: 10.3390/molecules201219758.
Zhong X, Xu M, Li T, Sun R. 2023. Development of EST-SSRs based on the transcriptome of Castanopsis carlesii and cross-species transferability in other Castanopsis species. PLoS One 18 (7): e0288999. DOI: 10.1371/journal.pone.0288999.9.

Most read articles by the same author(s)