Water quality and phytoplankton structure and functional classification in Tadlac Lake, Philippines

##plugins.themes.bootstrap3.article.main##

MARY SHEENALYN P. RODIL
CLARISSE BANAAG
ELIJAH JAYRALD T. VELASCO
ERWIN P. ELAZEGUI

Abstract

Abstract. Rodil MSP, Banaag C, Velasco EJT, Elazegui EP. 2024. Water quality and phytoplankton structure and functional classification in Tadlac Lake, Philippines. Biodiversitas 25: 2769-2782. Following the ban on aquaculture enforced from December 1999 to February 2000, the local government of Tadlac Lake, Philippines, is currently developing ecotourism projects in the lake. This necessitates the assessment of water quality and phytoplankton to ensure the sustainability of the lake, supporting both ecological preservation and visitor satisfaction. This present study unveils the current ecological condition of Tadlac Lake, while advancing knowledge of phytoplankton's responses to different environmental conditions and adaptation mechanisms through their functional classifications. Our study revealed that except for phosphate during the dry period, water quality parameters adhered to the standards for class C waters. Phytoplankton species are grouped into Phaeophyta, Cyanobacteria, and Chlorophyta. Bacillariophyceae was the most dominant class with 15 species. The persistent presence of Stephanodiscus hantzschii, Synedra affinis, Synedra tabulata, Achnanthes lanceolata, Navicula placentula, Neidium affine, Synechocystis aquatilis, Oscillatoria limosa, and Chlorococcum humicola indicate that the lake's recovery from past deterioration remains incomplete. Shannon-Weiner and Pielou evenness index suggested that the lake exhibits a state of light pollution. The Wilcoxon signed rank test reveals significant seasonal variations in environmental factors, including temperature, total dissolved solids, salinity, electrical conductivity, pH, dissolved oxygen, phosphates, and total coliform counts, which directly impact the structure and functional classification of phytoplankton communities. Spearman correlation coefficients and canonical correspondence analysis further establish significant correlations between individual phytoplankton species and these environmental parameters, providing additional evidence. The results emphasize the need for seasonally tailored environmental management strategies.

##plugins.themes.bootstrap3.article.details##

References
Akinnawo SO. (2023). Eutrophication: Causes, consequences, physical, chemical and biological techniques for mitigation strategies. Environmental Challenges, 12:100733. DOI:10.1016/j.envc.2023.100733.
Akhtar N, Syakir Ishak MI, Bhawani SA, Umar K. 2021. Various natural and anthropogenic factors responsible for water quality degradation: A review. Water 13:2660. DOI: 10.3390/w13192660.
American Public Health Association, American Water Works Association, Water Environment Federation. 2023. Standard methods for the examination of water and wastewater (24th ed.). APHA Press, Washington DC.
Banoo S, Acharya C, Behera RR, Satapathy DR, Panda CR. 2022. Phytoplankton population dynamics in relation to environmental variables at Paradip Port, East Coast of India. Thalassas 38(6): 1135 - 1153. DOI: 10.1007/s41208-022-00443-3.
Barinova S, Mamanazarova K. 2021. Diatom algae-indicators of water quality in the lower Zarafshan river, Uzbekistan. Water 13(3): 358-375. DOI: 10.3390/w13030358.
Batugedara I, Senanayake I. 2022. Plankton diversity in coastal waters near Kalu Ganga River Mouth; Sri Lanka. KDU Journal of Multidisciplinary Studies 4(2):7-20. DOI: 10.4038/kjms.v4i2.47.
Bellinger EG, Sigee DC 2015. Freshwater algae: Identification, enumeration and use as bioindicators (2nd ed.). Wiley, New Jersey.
Boyd CE. 2020. Dissolved Solids. In: Water Quality. Springer, Cham. DOI: 10.1007/978-3-030-23335-8_5.
Department of Environment and Natural Resources. 2016. Water quality guidelines and general effluents standards of 2016. https://emb.gov.ph/wp-content/uploads/2019/04/DAO-2016-08_WATER-QUALITY-GUIDELINES-AND-GENERAL-EFFLUENT-STANDARDS.pdf.
Dickens C, O’Brien G. 2021. Water quality: Standards and indicators. In: Leal Filho W, Azul AM, Brandli L, Lange Salvia A, Wall T (eds.) Clean Water and Sanitation. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham. DOI: 10.1007/978-3-319-70061-8_111-1.
Engelmann HD. 1978. Zur Dominanzklassifizierung von Bodenarthropoden. Pedobiologia 18:378-80. DOI:10.1016/s0031-4056(23)00612-1
Goswami K, Das Trakroo M, Kumar S, Mishra A. 2018. Impact of physico-chemical parameters on primary productivity of Lake Nainital. Journal of Entomology and Zoology Studies 6(4): 647-652.
Graco-Roza C, Soininen J, Corrêa G, Pacheco FS, Miranda M, Domingos P, Marinho MM. 2021. Functional rather than taxonomic diversity reveals
changes in the phytoplankton community of a large dammed river. Ecological Indicators 121:107048. DOI: 10.1016/j.ecolind.2020.107048
Gonzales S, Flavier M. 1996. Water Quality of Tadlac Lake. [Undergraduate Thesis].University of the Philippines Los Baños, Los Baños, Laguna. [Philippines].
Guo K, Wu N, Wang C, Yang D, He Y, He J, Chai Y, Duan M, Huang X, Riis T (2019) Trait dependent roles of environmental factors, spatial processes and grazing pressure on lake phytoplankton metacommunity. Ecological Indicators 103:312–320. DOI: 10.1016/j.ecolind.2019.04.028.
Jia J, Chen Q, Ren H, Lu R, He H, Gu P. 2022. Phytoplankton composition and their related factors in five different lakes in China: Implications for lake management. International Journal of Environmental Research and Public Health 19(5) :3135-3147. DOI: 10.3390/ijerph19053135.
Karacao?lu D, Dalkiran N, Dere S. (2011) Factors Affecting the Phytoplankton Diversity and Richness in a Shallow Eutrophic Lake in Turkey. Journal of Freshwater Ecology 21(4): 575-581.DOI: 10.1080/02705060.2006.9664118.
Kakouei K, Kraemer BM, Anneville O, Carvalho L, Feuchtmayr H, Graham JL, Higgins S, Pomati F, Rudstam LG, Stockwell JD, Thackeray SJ, Vanni MJ, Adrian R. 2021. Phytoplankton and cyanobacteria abundances in mid-21st century lakes depend strongly on future land use and climate projections. Global Change Biology 27:6409–6422. DOI: 10.1111/ gcb.15866.
Khalil S, Mahnashi MH, Hussain M, Zafar N, Waqar-Un-Nisa, Khan FS, Afzal U, Shah GM, Niazi UM, Awais M, Irfan M. 2021. Exploration and determination of algal role as bioindicator to evaluate water quality - Probing fresh water algae. Saudi Journal of Biological Sciences 28 (10): 5728- 5737. DOI: 10.1016/j.sjbs.2021.06.004.
Kock A, Taylor JC, Malherbe W. 2019. Diatom community structure and relationship with water quality in Lake Sibaya, KwaZulu-Natal, South Africa. South African Journal of Botany 123: 161-169. DOI: 10.1016/j.sajb.2019.03.013.
Halder N. 2017. Taxonomy and biodiversity of the Genus Oscillatoria Vauch. ex Gom. (Cyanoprokaryota: Oscillatoriales) with ecological notes from hooghly in West Bengal, India. Brazilian Journal of Biological Sciences 4: 89-101. DOI: 10.21472/bjbs.040710.
Hall RI, Smol JP. 2010. Diatoms as indicators of eutrophication. The diatoms: Applications for the environmental and earth sciences 122-151. DOI:10.1017/CBO9780511763175.008.
Hainz R, Wöber C, Schagerl M. 2009. The relationship between Spirogyra (Zygnematophyceae, Streptophyta) filament type groups and environmental conditions in Central Europe. Aquatic Botany 91(3): 173-180. DOI: 10.1016/j.aquabot.2009.05.004.
Li C, Gao X, Li S, Bundschuh J. 2020. A review of the distribution, sources, genesis, and environmental concerns of salinity in groundwater. Environmental Science and Pollution Research 27(33): 41157–41174. DOI: 10.1007/s11356-020-10354-6.
Makindi SM. 2016. Local communities, biodiversity conservation and ecotourism: A case study of the Kimana Community Wildlife Sanctuary, Kenya
African Journal of Hospitality, Tourism and Leisure 5 (3): 1-15.
Masithah ED, Islamy RA. 2023. Checklist of freshwater periphytic diatoms in the midstream of Brantas River, East Java, Indonesia. Biodiversitas 24(6): 3269-3281. DOI: 10.13057/biodiv/d2406xx.
Morsi, H., Mostafa ES, Eladel H.,Altuwajiri M. 2023. Screening the pollution-tolerant Chlorococcum sp. (Chlorophyceae) grown in municipal wastewater for simultaneous nutrient removal and biodiesel production. Water 15(9): 1723-1734. DOI: 10.3390/w15091723.
Nindarwi D, Samara S, Santanumurti M. 2021. Nitrate and phosphate dynamics of phytoplankton abundance in Kanceng River, Sepuluh, Bangkalan, East Java, Indonesia. IOP Conference Series: Earth and Environmental Science. 679(1):012063. DOI: 10.1088/1755-1315/679/1/012063.
Palmer CM. 1969. Composite rating of algae tolerating organic pollution. Journal of Phycology 5 (1), 78-82. DOI: 10.1111/j.1529-8817.1969.tb02581.x.
Peng X, Zhang L, Li Y, Lin Q, He C, Huang S, Li H, Zhang X, Liu B, Ge F, Zhou Q, Zhang Y, Wu Z. 2021. The changing characteristics of phytoplankton community and biomass in subtropical shallow lakes: coupling efects of land use patterns and lake morphology. Water Research 200:117235. DOI: 10.1016/j.watres.2021.117235.
Pielou EC. 1966. Shannon’s formula as a measure of specific diversity: Its use and misuse. The American Naturalist 100(914):463-465. DOI:10.1086/282439.
Sherman E, Moore JK, Primeau F, Tanouye D. 2016. Temperature influence on phytoplankton community growth rates. Global Biogeochemical Cycles 30(4): 550–559. DOI: 10.1002/2015gb005272.
Singh S, Anil AG, Kumar V, Kapoor D, Subramanian S, Singh J, Ramamurthy PC. 2022. Nitrates in the environment: A critical review of their distribution, sensing techniques, ecological effects and remediation. Chemosphere 287:131996. DOI: 10.1016/j.
Raven JA, Geider RJ. 1988. Temperature and algal growth. New Phytologist 4: 441–461.DOI: 10.1111/j.1469-8137.1988.tb00282.x.
Ray JG, Santhakumaran P, Kookal S. 2020. Phytoplankton communities of eutrophic freshwater bodies (Kerala, India) in relation to the physicochemical water quality parameters. Environment, Development and Sustainability 23(4). DOI:10.1007/s10668-019-00579-y.
Rivera JP, Gutierrez E, David I, Newsome D. 2022. Implementing an effective ecotourism strategy for the philippines. DOI:10.1007/978-981-19-4497-0_2.
Shannon CE. 1948. A mathematical theory of communication. Bell System Technical Journal 27(3):379-423. DOI: 10.1002/j.1538-7305.1948.tb01338.x.
Sharma AK, Malik DS, Bargali H. 2018. Food and feeding habits of Schizothorox Richordsonii (Gray, 1832) inhibiting Bhagirathi River, Tehri Garhwal, India. International Journal of Scientific Research 9(4): 25562-25565. DOI: 10.24327/ijrsr.2018.0904.1882.
Shoener BD, Schramm SM, Béline F, Bernard O, Martínez C, Plósz BG, Snowling S, Steyer J-P, Valverde-Pérez B, Wágner D. 2019. Microalgae and cyano-bacteria modeling in water resource recovery facilities: a critical review. Water Research X 2:100024. DOI: 10.1016/j.wroa.2018.100024.
Simpson EH. 1949. Measurement of diversity. Nature 163(4148):688–8. DOI: 10.1038/163688a0.
Song Y, Guo Y, Liu H, Zhang G, Zhang X, Thangaraj S, Sun J. 2022. Water quality shifts the dominant phytoplankton group from diatoms to dinofagellates in the coastal ecosystem of the Bohai Bay. Marine Pollution Bulletin 183:114078. DOI: 10.1016/j.marpolbul.2022.114078
Tito JCR, Luna LMG. 2020. Trophic status of twenty-four water reservoirs in the eastern of Cuba. Revista Cubana de Química 32(1):136-153.
Villaruel MJS, Camacho MVDC. 2022. Phytoplankton Community Dynamics in Tadlac Lake, Los Baños, Laguna, Philippines. Journal of Fisheries and Environment 46(3):55 - 71.
Yang Y, Chen H, Al MA, Ndayishimiye JC, Yang J, Isabwe A, Luo A, Yang J. 2022. Urbanization reduces resource use efciency of phytoplankton community by altering the environment and decreasing biodiversity. Journal of Environmental Sciences 112:140–151. DOI: 10.1016/j.jes.2021.05.001.
Zhang Y, Gao W, Li Y, Jiang Y, Chen X, Yao Y, Messyasz B, Yin K, He W, Chen Y. 2021. Characteristics of the Phytoplankton Community Structure and Water Quality Evaluation in Autumn in the Huaihe River (China). International Journal of Environmental Research and Public Health 18(22): 12092-12106. DOI: 10.3390/ijerph182212092.
Zhu H, Liu XG, Cheng SP. 2021. Phytoplankton community structure and water quality assessment in an ecological restoration area of Baiyangdian Lake, China. International Journal of Environmental Science and Technology 18:1529-1536. DOI:10.1007/s13762-020-02907-6
Zongo B, Zongo F, Ouattara A, & Boussim JI. 2011. A taxonomie study of the genus Closterium Nitzsch ex Ralfs (Zygnematophyceae, Streptophyta) in temporary ponds in the Burkina Faso, West Africa. Cryptogamie, Algologie 32(3):255–270. DOI: 10.7872/crya.v32.iss3.2011.255