The potential of cold plasma technology for weed control in the pre-growth and post-growth phases

##plugins.themes.bootstrap3.article.main##

ANWAR BUKHORI
DWI GUNTORO
SUDRADJAT
https://orcid.org/0000-0001-5824-8795
ANTO TRI SUGIARTO
https://orcid.org/0000-0002-6809-9882

Abstract

Abstract. Bukhori A, Guntoro D, Sudradjat, Sugiarto AT. 2024. The potential of cold plasma technology for weed control in the pre-growth and post-growth phases. Biodiversitas 25: 3628-3636. Efforts to reduce the use of herbicides can be made by using cold plasma technology. This technology produces heat energy through the emission of UV plasma light, generated by electrical energy. This research investigates the potential of various cold plasma treatments to inhibit germination, inhibit the growth of weed seeds in soil media, and suppress weed growth. The study was conducted at the Ecotoxicology Laboratory and Seed Propagation Laboratory, Institut Pertanian Bogor, Bogor, Indonesia, from March to September 2023. Three types of weeds used were Asystasia gangetica (L.) T.Anderson, Cyperus rotundus L., and Eleusine indica (L.) Gaertn. Three experiments were designed for this study. The first experiment tested cold plasma on weed seeds, the analysis was conducted using a single-factor completely randomized designed with varying doses of cold plasma and four replications. The second experiment tested cold plasma technology in soil media, the analysis was conducted using a single-factor completely randomized designed with various doses of cold plasma and seven replications. The third experiment tested cold plasma on the growth of each weed, the analysis was conducted using a single-factor randomized block design with various doses of cold plasma and four replications. The research shows that the application of cold plasma at a dose of 14 kV for 85 seconds can inhibit germination and weed growth in soil media of each type of weed A. gangetica, C. rotundus, and E. indica.

##plugins.themes.bootstrap3.article.details##

References
Abdulridha J, Bashyal M, Ampatzidis Y, Kanissery R. 2023. Steam application with paraquat to control goat weed (Scoparia dulcis) in citrus orchards. Smart Agric Technol 6: 100355. DOI: 10.1016/j.atech.2023.100355.
Adhikari B, Adhikari M, Park G. 2020. The effects of plasma on plant growth, development, and sustainability. Appl Sci 10 (17): 6045. DOI: 10.3390/app10176045.
Attri P, Kim YH, Park DH, Park JH, Hong YJ, Uhm HS, Kim K-N, Fridman A, Choi EH. 2015. Generation mechanism of hydroxyl radical species and its lifetime prediction during the plasma-initiated ultraviolet (uv) photolysis. Sci Rep 5: 9332. DOI: 10.1038/srep09332.
Barnor K, Caton J, Miljkovic D. 2023. The role of funding on research and science the impact of glyphosate herbicides on health and the environment. J Policy Model 45 (1): 103-120. DOI: 10.1016/j.jpolmod.2023.01.001.
Cabral CM, de Freitas Souza M, Alencar BTB, Ferreira EA, Silva DV, Reginaldo LTRT, Dos Santos JB. 2023. Sensibility, multiple tolerance and degradation capacity of forest species to sequential contamination of herbicides in groundwaters. J Hazard Mater 448: 130914. DOI: 10.1016/j.jhazmat.2023.130914.
Chen C, Zhou S, Yang X, Ren M, Qi YS, Mao Y, Yang C. 2024. In vitro study of cold atmospheric plasma-activated liquids inhibits malignant melanoma by affecting macrophage polarization through the ROS/JAK2/STAT1 pathway. Biomed Pharmacother 175: 116657. DOI: 10.1016/j.biopha.2024.116657.
Chen Y-Q, Cheng J-H, Sun D-W. 2019. Chemical, physical and physiological quality attributes of fruit and vegetables induced by cold plasma treatment mechanisms and application advances. Crit Rev Food Sci Nutr 60 (16): 2676-2690. DOI: 10.1080/10408398.2019.1654429.
Choudhury FK, Rivero RM, Blumwald E, Mittler R. 2016. Reactive oxygen species, abiotic stress and stress combinations in plants. Plant J 90 (5): 856-867. DOI: 10.1111/tpj.13299.
Dezest M, Bulteau A-L, Quinton D, Chavatte L, Le Bechec M, Cambus JP, Arbault S, Nègre-Salvayre A, Clément F, Cousty S. 2017. Oxidative modification and electrochemical inactivation of Escherichia coli upon cold atmospheric pressure plasma exposure. PLoS One 12 (3): e0173618. DOI: 10.1371/journal.pone.0173618.
Dhakal OB, Dahal R, Acharya TR, Lamichhane P, Gautam S, Lama B, Khanal R, Kaushik NK, Choi EH, Chalise R. 2014. Effects of spark dielectric barrier discharge plasma on water sterilization and seed germination. Curr Appl Phys 54: 49-58. DOI: 10.1016/j.cap.2023.08.006.
Diprose MF, Benson FA. 1984. Electrical methods of killing plants. J Agric Eng Res 30: 197-209. DOI: 10.1016/S0021-8634(84)80021-9.
Dobrin D, Magureanu M, Mandache NB, Ionita M-D. 2015. The effect of non thermal plasma treatment on wheat germination and early growth. Innov Food Sci Emerg Technol 29: 225-260. DOI: 10.1016/j.ifset.2015.02.006.
Dolezalova E, Lukes P. 2015. Membrane damage and active but non culturable state in liquid cultures of Escherichia coli treated with an atmospheric by reseacrh pressure cold plasma jet. Bioelectrochemistry 103: 7-14. DOI: 10.1016/bioelechem.2014.08.018.
Ebadi M-T, Abbasi S, Harouni A, Sefidkon F. 2019. Effect of cold plasma on essential oil content and composition of lemon verbena. Food Sci Nutr 7 (4): 1166-1171. DOI: 10.1002/fsn3.876.
Espeland EK, Perkins LB, Leger EA. 2010. Comparison of seed bank estimation techniques using six weed species in two soil types. Rangeland Ecol Manag 63 (2): 243-247. DOI: 10.2111/rem-d-09-00109.1.
Farmilo BJ, Moxham C. 2023. The effectiveness of weed control in a threatened plant community a grassland case study. Ecol Eng 193: 107017. DOI: 10.1016/j.ecoleng.2023.107017.
Gao X, Zhang A, Héroux P, Sand W, Sun Z, Zhan J, Wang C, Hao S, Li Z, Li Z, Guo Y, Liu Y. 2019. Effect of dielectric barrier discharge cold plasma on Pea seed growth. J Agric Food Chem 67 (39): 10813-10822. DOI: 10.1007/s13197-017-2711-8.
Ghazi RM, Yusoff NRN, Halim NSA, Wahab IRA, Ab Latif N, Hasmoni SH, Zaini MAA, Zakaria ZA. 2023. Health effects of herbicides and its current removal strategies. Bioengineered 14 (1): 2259526. DOI: 10.1080/21655979.2023.2259526.
Gunes S, He Z, van Acken D, Malone R, Cullen PJ, Curtin JF. 2021. Platinum nanoparticles inhibit intracellular ROS generation and protect against cold atmospheric plasma-induced cytotoxicity. Nanomedicine 36: 102436. DOI: 10.1016/j.nano.2021.102436.
Guntoro D, Fitri TY. 2013. Herbicide activity of a mixture of the active ingredients cyhalofop-butyl and penoxsulam against several types of rice weeds. Bull Agrohorti 1 (1): 140-148. DOI: 10.29244/agrob.1.1.140-148. [Indonesian]
Hamidah HS, Mukarlina, Lind R. 2015. Kemampuan ekstrak daun Sembung Rambat (Mikania micrantha H.B.K) sebagai bioherbisida gulma Melastoma affine D.Don. Protobiont 4 (1): 89-93. DOI: 10.26418/protobiont.v4i1.9450. [Indonesian]
Hammami H, Eslami SV. 2024. Physiological and growth responses of milk thistle (Silybum marianum L.) to soil-applied herbicides. J Environ Manage 365: 121420. DOI: 10.1016/j.jenvman.2024.121420.
Hayashi N, Yagyu Y, Yonesu A, Shiratani M. 2014. Sterilization characteristics of the surfaces of agricultural products using active oxygen species generated by atmospheric plasma and UV light. Jpn J Appl Phys 53: 05FR03. DOI: 10.7567/jjap.53.05fr03.
Hu X, Jin X, Xing R, Liu Y, Feng Y, Lyu Y, Zhang R. 2023. Effect of cold atmospheric plasma induced electric field on aquaporin-5 structure and ROS transport. Results Phys 51: 106621. DOI: 10.1016/j.rinp.2023.106621.
Indonesian Directorate of Fertilizers and Pesticides. 2021. Agricultural and Forestry Pesticides in 2021. Directorate of Agricultural Facilities and Infrastructure, Indonesia. [Indonesian]
Jiafeng J, Xin H, Ling L, Jiangang L, Hanliang S, Qilai X, Renhong Y, Yuanhua D. 2014. Effect of cold plasma treatment on seed germination and growth of wheat. Plasma Sci Technol 16: 54. DOI: 10.1088/1009-0630/16/1/12.
Jin X, McCullough PE, Liu T, Yang D, Zhu W, Chen Y, Yu J. 2023. A smart sprayer for weed control in bermudagrass turf based on the herbicide weed control spectrum. Crop Prot 170: 106270. DOI: 10.1016/j.cropro.2023.106270.
Lestari SP, Handayani S, Sari YE, Sari YI, Bakti AS, Harini NVA. 2022. Deployment of labor in organic rice farming in Lampung Province. J Agric Anim Sci 2 (2): 88-97. DOI: 10.47637/agrimals.v2i2.620. [Indonesian]
Li K, Zhang L, Shao C, Zhong C, Cao B, Shi Q, Gong B. 2021. Utilising cold plasma seed treatment technologies to delay cotyledon senescence in tomato seedlings. Sci Hortic 281: 109911. DOI: 10.1016/j.scienta.2021.109911.
Liu C, Yang K, Chen Y, Gong H, Feng X, Tang Z, Fu D, Qi L. 2023. Benefits of mechanical weeding for weed control, rice growth characteristics and yield in paddy fields. Field Crops Res 293: 108852. DOI: 10.1016/j.fcr.2023.108852.
Mandal M, Sarkar M, Khan A, Biswas M, Masi A, Rakwal R, Agrawal GK, Srivastava A, Sarkar A. 2022. Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) in plants maintenance of structural individuality and functional blend. Adv Redox Res 5: 100039. DOI: 10.1016/j.arres.2022.100039.
Mauser KM, Brühl CA, Zaller JG. 2024. Herbicide effects on nontarget organisms, biodiversity and ecosystem functions. J Smart Agric Technol 10: 239-257. DOI: 10.1016/B978-0-12-822562-2.00080-3.
Misra NN. 2015. The contribution of non-thermal and advanced oxidation technologies towards dissipation of pesticide residues. Trends Food Sci Technol 45 (2): 229-244. DOI: 10.1016/j.tifs.2015.06.005.
Ochi A, Konishi H, Ando S, Sato K, Yokoyama K, Tsushima S. 2017. Management of bakanae and bacterial seedling blight diseases in nurseries by irradiating with atmospheric plasma. Plant Pathol 66 (8): 67-76. DOI: 10.1111/ppa.12555.
Pankaj SK, Wan Z, Keener KM. 2018. Effects of cold plasma on food quality: A review. Food 7 (1): 4. DOI: 10.3390/foods7010004.
Pei X, Lu Y, Wu S, Xiong Q, Lu X. 2013. A study on the temporally and spatially resolved OH radical distribution of a room-temperature atmospheric-pressure plasma jet by laser induced fluorescence imaging. Plasma Sources Sci Technol 22: 025023. DOI: 10.1088/0963-0252/22/2/025023.
Pérez-Pizá MC, Cejas E, Zilli C, Prevosto L, Mancinelli B, Santa-Cruz D, Yannarelli G, Balestrasse K. 2020. Enhancement of soybean nodulation by seed treatment with non-thermal plasmas. Sci Rep 10: 4917. DOI: 10.1038/s41598-020-61913-3.
Prakash SD, Siliveru K, Zheng Y. 2023. Emerging applications of cold plasma technology in cereal grains and products. Trends Food Sci Technol 141: 104177. DOI: 10.1016/j.tifs.2023.104177.
Rawat D, Bains A, Chawla P, Kaushik R, Yadav R, Kumar A, Sridhar K, Sharma M. 2023. Hazardous impacts of glyphosate on human and environment health occurrence and detection in food. Chemosphere 329: 138676. DOI: 10.1016/j.chemosphere.2023.138676.
Richard D, Leimbrock-Rosch L, Keßler S, Stoll E, Zimmer S. 2023. Soybean yield response to different mechanical weed control methods in organic agriculture in Luxembourg. Eur J Agron 147: 126842. DOI: 10.1016/j.eja.2023.126842.
Sachdev S, Ansari SA, Ansari MI, Fujita M, Hasanuzzaman M. 2021. Plant stress due to reactive oxygen species generation, signaling, and defense mechanisms. Antioxidants 10 (2): 277. DOI: 10.3390/antiox10020277.
Selcuk M, Oksuz L, Basaran P. 2018. Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment. Bioresour Technol 99 (11): 5104-5109. DOI: 10.1016/j.biortech.2007.09.076.
Seol Y-B, Kim J, Park S-H, Chang HY. 2017. Atmospheric pressure pulsed plasma induces cell death in photosynthetic organs via intracellularly generated ROS. Sci Rep 7: 589. DOI: 10.1038/s41598-017-00480-6.
Shekhawat K, Rathore SS, Chauhan BS. 2020. Weed management in dry direct-seeded rice: A review on challenges and opportunities for sustainable rice production. Agronomy 10 (9): 1264. DOI: 10.3390/agronomy10091264.
Shelar A, Singh AV, Dietrich P, Maharjan RS, Thissen A, Didwal PN, Shinde M, Laux P, Luch A, Mathe V, Jahnke T, Chaskar M, Patil R. 2022. Emerging cold plasma treatment and machine learning prospects for seed priming: A step towards sustainable food production. RSC Adv 12 (17): 10467-10488. DOI: 10.1039/d2ra00809b.
Susha VS, Das TK, Nath CP, Pandey R, Paul S, Ghosh S. 2018. Impacts of tillage and herbicide mixture on weed interference, agronomic productivity and profitability of a maize - Wheat system in the North-western Indo-Gangetic Plains. Field Crop Res 219: 180-191. DOI: 10.1016/j.fcr.2018.02.003.
Tetelay F. 2003. The allelopathic effect of Acacia mangium Wild. on the germination of mung bean (Phaseolus radiatus. L) and corn (Zea mays) seeds. Jurnal Ilmu Tanah dan Lingkungan 4 (1): 41-49. [Indonesian]
Umiyati U, Widayat D. 2017. Weeds and Their Control. Deepublish, Yogyakarta. [Indonesian]
Volin JC, Denes FS, Young RA, Park SMT. 2000. Modification of seed germination performance through cold plasma chemistry technology. Crop Sci 40 (6): 1706-1718. DOI: 10.2135/cropsci2000.4061706x.
Wojtyla ?, Lechowska K, Kubala S, Garnczarska M. 2016. Different modes of hydrogen peroxide action during seed germination. Front Plant Sci 7: 66. DOI: 10.3389/fpls.2016.00066.
Xu H, Fang C, Shao C, Li L, Huang Q. 2022. Study of the synergistic effect of singlet oxygen with other plasma-generated ROS in fungi inactivation during water disinfection. Sci Total Environ 838: 156576. DOI: 10.1016/j.scitotenv.2022.156576.
Zhang X, Liu D, Zhou R, Song Y, Sun Y, Zhang Q, Niu J, Fan H, Yang S-Z. 2014. Atmospheric cold plasma jet for plant disease treatment. Appl Phys Lett 104: 043702. DOI: 10.1063/1.4863204.