Phylogenetic analysis of Rhizophora mucronata in Savu Sea Marine National Park, East Nusa Tenggara, Indonesia

##plugins.themes.bootstrap3.article.main##

IHWAN
http://orcid.org/0000-0002-9112-9066
ESTRI LARAS ARUMINGTYAS
CATUR RETNANINGDYAH
LUCHMAN HAKIM

Abstract

Abstract. Ihwan, Arumningtyas EL, Retnaningdyah C, Hakim L. 2024. Phylogenetic analysis of Rhizophora mucronata in Savu Sea Marine National Park, East Nusa Tenggara, Indonesia. Biodiversitas 25: 4498-4506. Mangroves, a crucial coastal ecosystem, play a crucial role in marine biodiversity and shoreline protection. This study investigates the phylogenetic patterns and haplotype analysis of Rhizophora mucronate, a key mangrove species, in the biodiverse Savu Sea Marine National Park within the Coral Triangle. We collected 30 R. mucronata samples from 15 mangrove populations in the park, including Sumba Island, Sabu Island, Rote Island, and Timor Island. The Maximum Likelihood-based phylogenetic tree reconstruction revealed distinct genetic clusters, segregating populations into two primary clades: Indo-West Pacific (IWP) and Atlantic East Pacific (AEP). Populations from the Sumba, Rote, Semau, Timor, and Sabu Islands primarily aligned with the IWP clade, while some samples exhibited unexpected clustering patterns, indicating potential unique genetic lineages. Notably, populations from Hambapraing and Tesabela showed closer genetic affinity to AEP and the outgroup species, respectively. Our subsequent haplotype analysis further unveiled a complex network of sequence-dependent populations, with notable haplotypes, such as Haplotype 2, showing widespread distribution across Sabu, Sumba, Rote, and Timor, and Haplotype 13 linking populations from Singapore, China, India, USA, Kenya, and Seychelles. These findings not only underscore the complexity of genetics but also highlight the importance of considering distinctive genetic patterns to unravel evolutionary relationships, thereby providing a solid foundation for future research and conservation initiatives.

##plugins.themes.bootstrap3.article.details##

References
Almeida-Rocha JM, Soares LASS, Andrade ER, Gaiotto FA, Cazetta E. 2020. The impact of anthropogenic disturbances on the genetic diversity of terrestrial species: A global meta-analysis. Mol Ecol 29 (24): 4812-4822. DOI: 10.1111/mec.15688.
Anu K, Sneha VK, Busheera P, Muhammed J, Augustine A 2024. Mangroves in environmental engineering: Harnessing the multifunctional potential of nature’s coastal architects for sustainable ecosystem management. Results Eng 21: 101765. DOI: 10.1016/j.rineng.2024.101765.
Arceo-Carranza D, Chiappa-Carrara X, Chávez López R, Yáñez Arenas C. 2021. Mangroves as feeding and breeding grounds BT. In: Rastogi RP, Phulwaria M, Gupta DK (eds). Mangroves: Ecology, Biodiversity and Management. Springer, Singapore. DOI: 10.1007/978-981-16-2494-0_3.
Arifanti VB, Sidik F, Mulyanto B, Susilowati A, Wahyuni T, Subarno, Yulianti, Yuniarti N, Aminah A, Suita E, Karlina E, Suharti S, Pratiwi Turjaman M, Hidayat A, Rachmat HH, Imanuddin R, Yeny I, Darwiati W, Sari N, Hakim SS, Slamet WY Novita, N. 2022. Challenges and strategies for sustainable mangrove management in Indonesia: A review. Forests 13 (5): 695. DOI: 10.3390/f13050695.
Batool N, Ilyas N, Shahzad A. 2014. Asiatic mangrove (Rhizophora mucronata) An overview. Eur Acad Res II (3): 3348-3363.
Berbel-Filho WM, Tatarenkov A, Espírito-Santo HMV, Lira MG, Garcia de Leaniz C, Lima SMQ, Consuegra S. 2020. More than meets the eye: Syntopic and morphologically similar mangrove killifish species show different mating systems and patterns of genetic structure along the Brazilian coast. Heredity 125 (5): 340-352. DOI: 10.1038/s41437-020-00356-y.
Canty SWJ, Kennedy JP, Fox G, Matterson K, González VL, Núñez-Vallecillo ML, Preziosi RF, Rowntree JK. 2022. Mangrove diversity is more than fringe deep. Sci Rep 12 (1): 1695. DOI: 10.1038/s41598-022-05847-y.
Ceccarelli DM, Lestari AP, Rudyanto, White AT. 2022. Emerging marine protected areas of eastern Indonesia: Coral reef trends and priorities for management. Mar Pol 141: 105091. DOI: 10.1016/J.MARPOL.2022.105091.
Cerón-Souza I, Rivera-Ocasio E, Medina E, Jiménez JA, McMillan WO, Bermingham E. 2010. Hybridization and introgression in new world red mangroves, Rhizophora (Rhizophoraceae). Am J Bot 97 (6): 945-957. DOI: 10.3732/ajb.0900172.
Chatting M, Al-Maslamani I, Walton M, Skov MW, Kennedy H, Husrevoglu YS, Le Vay L. 2022. Future mangrove carbon storage under climate change and deforestation. Front Mar Sci 9: 781876. DOI: 10.3389/fmars.2022.781876.
Chenani SK, Kafaky SB, Kiadaliri H, Ebrahimi A, Etminan A. 2023. Relationship among environmental factors with distribution of genetic types of Avicennia marina in mangrove ecosystems of Iran. Intl J Environ Sci Technol 20 (3): 2713-2732. DOI: 10.1007/s13762-023-04814-y.
Dominicis MD, Wolf J, Hespen Rv, Zheng P, Hu Z. 2023. Mangrove forests can be an effective coastal defence in the Pearl River Delta, China. Commun Earth Environ 4 (1): 13. DOI: 10.1038/s43247-022-00672-7.
Duminil J, Mendene Abessolo DT, Ndiade Bourobou D, Doucet JL, Loo J, Hardy OJ. 2016. High selfing rate, limited pollen dispersal and inbreeding depression in the emblematic African rain forest tree Baillonella toxisperma-management implications. For Ecol Manag 379: 20-29. DOI: 10.1016/j.foreco.2016.08.003.
Exposito-Alonso M, Booker TR, Czech L, Gillespie L, Hateley S, Kyriazis CC, Lang PLM, Leventhal L, Nogues-Bravo D, Pagowski V, Ruffley M, Spence JP, Toro Arana SE, Weiß CL, Zess E. 2022. Genetic diversity loss in the Anthropocene. Science 377 (6613): 1431-1435. DOI: 10.1126/science.abn5642.
Feng X, Li G, Wu W, Lyu H, Wang J, Liu C, Zhong C, Shi S, He Z. 2023. Expansion and adaptive evolution of the WRKY transcription factor family in Avicennia mangrove trees. Mar Life Sci Technol 5 (2): 155-168. DOI: 10.1007/s42995-023-00177-y.
Giri C. 2023. Frontiers in global mangrove forest monitoring. Remote Sensing 15 (15): 3852. DOI: 10.3390/rs15153852.
Hamilton S, Presotto A. 2024. A global database to monitor annual mangrove forest change, 2000-2020 (GMC-21). Research Square. DOI: 10.21203/rs.3.rs-4262946/v1.
Hermansen TD, Britton DR, Ayre DJ, Minchinton TE. 2014. Identifying the real pollinators? Exotic honeybees are the dominant flower visitors and only effective pollinators of Avicennia marina in Australian Temperate Mangroves. Estuar Coast 37: 621-635. DOI: 10.1007/s12237-013-9711-3.
Ihwan, Rusydi, Uslan, Widodo, Hakim L. 2020. Genetic diversity of Rhizophora mucronata on the western coast of Timor Island. Kuwait J Sci 47 (1): 65-71.
Ihwan, Uslan, Widodo, Hakim L. 2019. Genetic diversity of Rhizophora mucronata in eastern region of Timor Island, Indonesia as revealed by RAPD. Biodiversitas 20: 3364-3371. DOI: 10.13057/biodiv/d201133.
Inomata N, Wang XR, Changtragoon S, Szmidt AE. 2009. Levels and patterns of DNA variation in two sympatric mangrove species, Rhizophora apiculata and R. mucronata from Thailand. Genes Genet Syst 84 (4): 277-286. DOI: 10.1266/ggs.84.277.
Kondo K, Nakamura T, Tsuruda K, Noriko Saito A, Yaguchi Y. 1987. Pollination in Bruguiera gymnorrhiza and Rhizophora mucronata (Rhizophoraceae ) in Ishigaki Island, The Ryukyu Islands, Japan. Biotropica 19 (4): 377-380.
Kong S, Sánchez-Pacheco SJ, Murphy R. W. 2016. On the use of median-joining networks in evolutionary biology. Cladistics 32 (6): 691-699. DOI: 10.1111/cla.12147.
Lemoine F, Entfellner JBD, Wilkinson E, Correia D, Felipe MD, de Oliveira T, Gascuel O. 2018. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 556 (7702): 452-456. DOI: 10.1038/s41586-018-0043-0.
Lira CF, Granado R. 2023. Genetic and epigenetic diversity of mangrove plants: Markers of adaptation in a changing environment. In: Schaeffer-Novelli Y, Abuchahla GMdeO, Cintrón-Molero G (eds). Brazilian Mangroves and Salt Marshes. Springer International Publishing, New York.
Lo EY, Duke NC, Sun M. 2014. Phylogeographic pattern of Rhizophora (Rhizophoraceae) reveals the importance of both vicariance and long-distance oceanic dispersal to modern mangrove distribution. BMC Evol Biol 14: 83. DOI: 10.1186/1471-2148-14-83.
López CL, Domic AI, Mayta C, García E, Quezada JAN, Gallegos SC. 2021. Pollen limitation and reproductive incompatibility system in a critically endangered tree, Polylepis incarum (Bitter) M. Kessler & Schmidt-Leb (Rosaceae). Neotrop Biodivers 7 (1): 257-265. DOI: 10.1080/23766808.2021.1940050.
Lusiana ED, Astutik S, Nurjannah N, Sambah AB. 2023. Spatial delineation on marine environmental characteristics using fuzzy c-means clustering method. Glob J Environ Sci Manag 9 (3): 463-476. DOI: 10.22035/gjesm.2023.03.07.
Mantiquilla JA, Shiao MS, Shih HC, Chen WH, Chiang YC. 2021. A review on the genetic structure of ecologically and economically important mangrove species in the Indo-West Pacific. Ecol Genet Genom 18: 100078. DOI: 10.1016/j.egg.2020.100078.
Miraki M, Sohrabi H, Immitzer M. 2023. Tree species mapping in mangrove ecosystems using UAV-RGB Imagery and object-based image classification. J Indian Soc Remote Sens 51 (10): 2095-2103. DOI: 10.1007/s12524-023-01752-7.
Mori GM, Zucchi MI, Souza AP. 2015. Multiple-geographic-scale genetic structure of two mangrove tree species: The roles of mating system, hybridization, limited dispersal and extrinsic factors. PLoS One 10 (2): e0118710. DOI: 10.1371/journal.pone.0118710.
Ng WL, Onishi Y, Inomata N, Teshima KM, Chan HT, Baba S, Changtragoon S, Siregar IZ, Szmidt AE. 2015. Closely related and sympatric but not all the same: Genetic variation of Indo-West Pacific Rhizophora mangroves across the Malay Peninsula. Conserv Genet 16 (1): 137-150. DOI: 10.1007/s10592-014-0647-3.
Nuraeni E, Kusuma YWC. 2023. The role of community-based tourism for mangroves conservation in Banten, Indonesia. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan 13 (4): 606-612. DOI: 10.29244/jpsl.13.4.606-612.
Osland MJ, Feher, Aura C, Griffith KT, Cavanaugh KC, Enwright NM, Day RH, Stagg CL, Krauss KW, Howard RJ, Grace JB, Rogers, K. 2017. Climatic controls on the global distribution, abundance, and species richness of mangrove forests. Ecol Monographs 82 (2): 341-359. DOI: 10.1002/ecm.1248
Paradis E. 2018. Analysis of haplotype networks: The randomized minimum spanning tree method. Methods Ecol Evol 9 (5): 1308-1317. DOI: 10.1111/2041-210X.12969.
Paulus CA, Fauzi A, Adar D. 2023. Analyzing community perception of protected areas to effectively mitigate environmental risks using qualitative comparative analysis: The case of Savu Sea National Marine. Sustainability 15 (23): 16498. DOI: 10.3390/su152316498.
Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R. 2015. A practical guide to environmental association analysis in landscape genomics. Mol Ecol 24 (17): 4348-4370. DOI: 10.1111/mec.13322.
Russo CADM, Selvatti AP. 2018. Bootstrap and Rogue Identification Tests for Phylogenetic Analyses. Mol Biol Evol 35 (9): 2327-2333. DOI: 10.1093/molbev/msy118.
Sahu SK, Singh R, Kathiresan K. 2016. Multi-gene phylogenetic analysis reveals the multiple origin and evolution of mangrove physiological traits through exaptation. Estuar Coast Shelf Sci 183: 41-51. DOI: 10.1016/j.ecss.2016.10.021.
Sefton JP, Woodroffe SA. 2021. Assessing the use of mangrove pollen as a quantitative sea?level indicator on Mahé, Seychelles. J Quart Sci 36 (2): 311-323. DOI: 10.1002/jqs.3272.
Silaban LL, Fakhrurrozi, Juraij, Fauzi MR, Larasati CE, Rahman I. 2023. View of diversity of seagrass species in the conservation area of the Sawu Sea Marine National Park (TNP). Jurnal Biologi Tropis 23 (4): 323-329. DOI: 10.29303/jbt.v23i4.5268.
Simon C. 2022. An evolving view of phylogenetic support. Syst Biol 71 (4): 921-928. DOI: 10.1093/sysbio/syaa068.
Spalding M, Kainuma M, Collins L. 2010. World Atlas of Mangroves 1st Edition. Routledge, London. DOI: 10.4324/9781849776608.
Takayama K, Tamura M, Tateishi Y, Webb EL, Kajita T. 2013. Strong genetic structure over the American continents and transoceanic dispersal in the mangrove genus Rhizophora (Rhizophoraceae) revealed by broad-scale nuclear and chloroplast DNA analysis. Am J Bot 100 (6): 1191-1201. DOI: 10.3732/ajb.1200567.
Till BJ, Jankowicz-Cieslak J, Huynh OA, Beshir MM, Laport RG, Hofinger BJ. 2015. Low-cost methods for molecular characterization of mutant plants: Tissue desiccation, DNA extraction and mutation discovery: Protocols. Springer Nature, London. DOI: 10.1007/978-3-319-16259-1.
Triest L, van der Stocken T, de Ryck D, Kochzius M, Lorent S, Ngeve M, Ratsimbazafy HA, Sierens T, van der Ven R, Koedam N. 2021. Expansion of the mangrove species Rhizophora mucronata in the Western Indian Ocean launched contrasting genetic patterns. Sci Rep 11 (1): 4987. DOI: 10.1038/s41598-021-84304-8.
Wee AKS, Low SY, Webb EL. 2014a. Pollen limitation affects reproductive outcome in the bird-pollinated mangrove Bruguiera gymnorrhiza (lam.) in a highly urbanized environment. Aquat Bot 120 (1-4): 240-243. DOI: 10.1016/j.aquabot.2014.09.001.
Wee AKS, Takayama K, Asakawa T, Thompson B, Onrizal, Sungkaew S, Tung NX, Nazre M, Soe KK, Tan HTW, Watano Y, Baba S, Kajita T, Webb EL. 2014b. Oceanic currents, not land masses, maintain the genetic structure of the mangrove Rhizophora mucronata Lam. (Rhizophoraceae) in Southeast Asia. J Biogeogr 41 (5): 954-964. DOI: 10.1111/jbi.12263.
Yahya AF, Hyun JO, Lee JH, Kim YY, Lee KM, Hong KN, Kim SC. 2014. Genetic variation and population genetic structure of Rhizophora apiculata (Rhizophoraceae) in the greater Sunda Islands, Indonesia using microsatellite markers. J Plant Res 127 (2): 287-297. DOI: 10.1007/s10265-013-0613-z.
Yan Y-B, Duke NC, Sun M. 2016. Comparative Analysis of the pattern of population genetic diversity in three Indo-West pacific Rhizophora mangrove species. Front Plant Sci 7: 1434. DOI: 10.3389/fpls.2016.01434.

Most read articles by the same author(s)

1 2 3 > >>