Ecological perspective to sustainably manage the secondary forest in the lowland of Doberai Peninsula, Indonesia

##plugins.themes.bootstrap3.article.main##

JONNI MARWA
ANTONI UNGIRWALU
CHRISTIAN SOLEMAN IMBURI
DONY ARISTONE DJITMAU
AGUSTINUS MURDJOKO
NITHANEL MIKAEL HENDRIK BENU

Abstract

Abstract. Marwa J, Ungirwalu A, Imburi CS, Djitmau DA, Murdjoko A, Benu NMH. 2024. Ecological perspective to sustainably manage the secondary forest in the lowland of Doberai Peninsula, Indonesia. Biodiversitas 25: 2720-2732. This research aims to examine the composition of flora and fauna in secondary forests, with the aim of using the results to provide input for sustainable forest management. Suggestions for proper ecological management have been put forward, as they are crucial for preserving ecosystem functions and protecting species. We revealed that the identified area was a secondary forest with a composition of 225 species and 83 families of vegetation. The distribution was fairly uniform, encompassing 6 life forms: ferns, herbs, lianas, palms, shrubs, and trees. For fauna, the result indicated the presence of 10 species of mammalia, 37 species of aves, 6 species of reptiles, and 4 species of insects. The secondary forest still supports a high species richness of vegetation and fauna. These findings suggest that the secondary forest is undergoing a successional process in which various vegetation, particularly lianas and herbs, compete to gain more sunlight due to increased canopy openness. Forest management must optimize multi-factors, as in this research, and we suggest considering development and conservation, utilization of buffer zones, monitoring vegetation and animal breeding, and reforestation. The balance between development and conservation is critical, offering opportunities for sustainable practices and community involvement.

##plugins.themes.bootstrap3.article.details##

References
Addo-Fordjour P, Ofosu-Bamfo B, Kwofie F, et al (2019) Changes in liana community structure and functional traits along a chronosequence of selective logging in a moist semi-deciduous forest in Ghana. Plant Ecol Divers. https://doi.org/10.1080/17550874.2019.1675095
Aguirre-Gutiérrez J, Berenguer E, Oliveras Menor I, et al (2022) Functional susceptibility of tropical forests to climate change. Nat Ecol Evol. https://doi.org/10.1038/s41559-022-01747-6
Barlow J, Lennox GD, Ferreira J, et al (2016) Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535:144–147. https://doi.org/10.1038/nature18326
Brown S, Lugo AE, Brown S, et al (1990) Tropical secondary forests. J Trop Ecol 6:1–32
Cámara-Leret R, Frodin DG, Adema F, et al (2020) New Guinea has the world’s richest island flora. Nature 584:579–583. https://doi.org/10.1038/s41586-020-2549-5
Cámara–Leret R, Dennehy Z (2019) Indigenous Knowledge of New Guinea’s Useful Plants: A Review. Econ Bot 73:405–415. https://doi.org/10.1007/s12231-019-09464-1
Chazdon RL (2003) Tropical forest recovery: Legacies of human impact and natural disturbances. Perspect Plant Ecol Evol Syst 6:51–71. https://doi.org/10.1078/1433-8319-00042
Chazdon RL, Finegan B, Capers RS, et al (2010) Composition and dynamics of functional groups of trees during tropical forest succession in northeastern Costa Rica. Biotropica 42:31–40. https://doi.org/10.1111/j.1744-7429.2009.00566.x
Chen HL, Lewison RL, An L, et al (2020) Assessing the effects of payments for ecosystem services programs on forest structure and species biodiversity. Biodivers Conserv 29:2123–2140. https://doi.org/10.1007/s10531-020-01953-3
Cleary DFR, Eichhorn KAO (2018) Variation in the composition and diversity of ground-layer herbs and shrubs in unburnt and burnt landscapes. J Trop Ecol 34:243–256. https://doi.org/10.1017/S0266467418000196
Cole LJ, Stockan J, Helliwell R (2020) Managing riparian buffer strips to optimise ecosystem services: A review. Agric Ecosyst Environ 296:. https://doi.org/10.1016/j.agee.2020.106891
de Almeida-Rocha JM, Peres CA (2021) Nominally protected buffer zones around tropical protected areas are as highly degraded as the wider unprotected countryside. Biol Conserv 256:. https://doi.org/10.1016/j.biocon.2021.109068
Edwards DP, Tobias JA, Sheil D, et al (2014) Maintaining ecosystem function and services in logged tropical forests. Trends Ecol Evol 29:511–520. https://doi.org/10.1016/j.tree.2014.07.003
Ellis PW, Putz FE (2019) Introduction to the special issue: Reduced-impact logging for climate change mitigation (RIL-C). For Ecol Manage 439:171–172. https://doi.org/10.1016/j.foreco.2019.02.034
Fatem SM, Djitmau DA, Ungirwalu A, et al (2020) Species diversity, composition, and heterospecific associations of trees in three altitudinal gradients in Bird’s Head Peninsula, Papua, Indonesia. Biodiversitas 21:3596–3605. https://doi.org/10.13057/biodiv/d210824
Ferrer Velasco R, Köthke M, Lippe M, Günter S (2020) Scale and context dependency of deforestation drivers: Insights from spatial econometrics in the tropics
Gaveau DLA, Santos L, Locatelli B, et al (2021) Forest loss in Indonesian New Guinea (2001–2019): Trends, drivers and outlook. Biol Conserv 261:109225. https://doi.org/10.1016/j.biocon.2021.109225
Hammer Ø, Harper DA, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9 pp
Hiltner U, Huth A, Bräuning A, et al (2018) Simulation of succession in a neotropical forest: High selective logging intensities prolong the recovery times of ecosystem functions. For Ecol Manage 430:517–525. https://doi.org/10.1016/j.foreco.2018.08.042
Holt BG, Lessard JP, Borregaard MK, et al (2013) An update of Wallace’s zoogeographic regions of the world. Science (80- ) 339:74–78. https://doi.org/10.1126/science.1228282
Hu J, Herbohn J, Chazdon RL, et al (2018) Recovery of species composition over 46?years in a logged Australian tropical forest following different intensity silvicultural treatments. For Ecol Manage 409:660–666. https://doi.org/10.1016/j.foreco.2017.11.061
Kleinschroth F, Healey JR (2017) Impacts of logging roads on tropical forests. Biotropica 49:620–635. https://doi.org/10.1111/btp.12462
Letcher SG, Chazdon RL, Andrade ACS, et al (2012) Phylogenetic community structure during succession: Evidence from three Neotropical forest sites. Perspect Plant Ecol Evol Syst 14:79–87. https://doi.org/10.1016/j.ppees.2011.09.005
Liang J, Gamarra JP, Picard N, et al (2022) Co-limitation towards lower latitudes shapes global forest diversity gradients. Nat Ecol Evol. https://doi.org/10.1038/s41559-022-01831-x
Liu Y, Xu X, Dimitrov D, et al (2023) An updated floristic map of the world. Nat Commun 14:. https://doi.org/10.1038/s41467-023-38375-y
Lugo AE (2009) The emerging era of novel tropical forests. Biotropica 41:589–591. https://doi.org/10.1111/j.1744-7429.2009.00550.x
Malhi Y, Girardin C, Metcalfe DB, et al (2021) The Global Ecosystems Monitoring network: Monitoring ecosystem productivity and carbon cycling across the tropics. Biol Conserv 253:. https://doi.org/10.1016/j.biocon.2020.108889
Malhi Y, Riutta T, Wearn OR, et al (2022) Logged tropical forests have amplified and diverse ecosystem energetics. Nature 612:707–713. https://doi.org/10.1038/s41586-022-05523-1
Matsuo T, Martínez-Ramos M, Bongers F, et al (2021) Forest structure drives changes in light heterogeneity during tropical secondary forest succession. J Ecol 1–14. https://doi.org/10.1111/1365-2745.13680
Menezes GSC, Cazetta E, Dodonov P (2019) Vegetation structure across fire edges in a Neotropical rain forest. For Ecol Manage 453:117587. https://doi.org/10.1016/j.foreco.2019.117587
Mukul SA, Herbohn J, Firn J (2016) Tropical secondary forests regenerating after shifting cultivation in the Philippines uplands are important carbon sinks. Sci Rep 6:1–12. https://doi.org/10.1038/srep22483
Murdjoko A (2013) Recuperation of Non-commercial Trees in Logged Forest in Southern Papua, Indonesia. J Manaj Hutan Trop 19:94–102. https://doi.org/10.7226/jmht.19.2.94
Murdjoko A, Brearley FQ, Ungirwalu A, et al (2022) Secondary Succession after Slash-and-Burn Cultivation in Papuan Lowland Forest, Indonesia. Forests 13:1–14
Murdjoko A, Djitmau DA, Ungirwalu A, et al (2021a) Pattern of tree diversity in lowland tropical forest in Nikiwar, West Papua, Indonesia. Dendrobiology 85:78–91. https://doi.org/https://doi.org/10.12657/denbio.085.008
Murdjoko A, Marsono D, Sadono R, Hadisusanto S (2017) Recovery of residual forest ecosystem as an impact of selective logging in South Papua: An ecological approach. Biotropia (Bogor) 24:230–245. https://doi.org/10.11598/btb.2017.24.3.732
Murdjoko A, Marsono D, Sadono R, Hadisusanto S (2016) Plant Species Composition and Their Conspecific Association in Natural Tropical Rainforest, South Papua. Biosaintifika J Biol Biol Educ 8:33. https://doi.org/10.15294/biosaintifika.v8i1.5217
Murdjoko A, Ungirwalu A, Mardiyadi Z, et al (2021b) Floristic Composition of Buah Hitam Habitats in Lowland Tropical Mixed Forest of West Papua, Indonesia. Floresta e Ambient 28:. https://doi.org/https://doi.org/10.1590/2179-8087-FLORAM-2021-0042
N’Guessan AE, N’dja JK, Yao ON, et al (2019) Drivers of biomass recovery in a secondary forested landscape of West Africa. For Ecol Manage 433:325–331. https://doi.org/10.1016/j.foreco.2018.11.021
Naime J, Mora F, Sánchez-Martínez M, et al (2020) Economic valuation of ecosystem services from secondary tropical forests: trade-offs and implications for policy making. For Ecol Manage 473:. https://doi.org/10.1016/j.foreco.2020.118294
Oliver PM, Bower DS, McDonald PJ, et al (2022) Melanesia holds the world’s most diverse and intact insular amphibian fauna. Commun Biol 5:1–10. https://doi.org/10.1038/s42003-022-04105-1
Pan Y, Birdsey RA, Fang J, et al (2011) A large and persistent carbon sink in the world’s forests. Science (80- ) 333:988–993. https://doi.org/10.1126/science.1201609
Philipso CD, Cutler MEJ, Brodric PG, et al (2020) Active restoration accelerates the carbon recovery of human-modified tropical forests. Science (80- ) 369:838–841. https://doi.org/10.1126/science.aay4490
Piotto D, Craven D, Montagnini F, et al (2019) Successional, spatial, and seasonal changes in seed rain in the Atlantic forest of southern Bahia, Brazil. PLoS One 14:1–15. https://doi.org/10.1371/journal.pone.0226474
Powers JS, Marín-Spiotta E (2017) Ecosystem Processes and Biogeochemical Cycles in Secondary Tropical Forest Succession. Annu Rev Ecol Evol Syst 48:497–519. https://doi.org/10.1146/annurev-ecolsys-110316-022944
Pyles MV, Silva Magnago LF, Maia VA, et al (2022) Human impacts as the main driver of tropical forest carbon. Sci Adv 8:. https://doi.org/10.1126/sciadv.abl7968
Rosen MF, Jakovac CC, Vieira DLM, et al (2022) Ecological integrity of tropical secondary forests?: concepts and indicators. Biol Rev. https://doi.org/10.1111/brv.12924
Sagrim M (2022) Traditional knowledge of land management in Maybrat District, West Papua Province, Indonesia: implication for agriculture development. Biodiversitas 23:4144–4151. https://doi.org/10.13057/biodiv/d230836
Seydewitz T, Pradhan P, Landholm DM, Kropp JP (2023) Deforestation Drivers Across the Tropics and Their Impacts on Carbon Stocks and Ecosystem Services. Anthr Sci 2:81–92. https://doi.org/10.1007/s44177-023-00051-7
Sinacore K, García EH, Finkral A, et al (2023) Mixed success for carbon payments and subsidies in support of forest restoration in the neotropics. Nat Commun 14:1–13. https://doi.org/10.1038/s41467-023-43861-4
Sonbait LY, Manik H, Warmetan H, et al (2021) The natural resource management to support tourism?: A traditional knowledge approach in Pegunungan Arfak Nature Reserve, West Papua, Indonesia. Biodiversitas 22:4466–4474. https://doi.org/10.13057/biodiv/d221040
Spellerberg IF, Fedor PJ (2003) A tribute to Claude-Shannon (1916-2001) and a plea for more rigorous use of species richness, species diversity and the “Shannon-Wiener” Index. Glob Ecol Biogeogr 12:177–179. https://doi.org/10.1046/j.1466-822X.2003.00015.x
Tawer P, Maturbongs R, Murdjoko A, et al (2021) Vegetation dynamic post-disturbance in tropical rain forest of bird’s head peninsula of west papua, indonesia. Ann Silvic Res 46:48–58. https://doi.org/10.12899/ASR-2145
Thomas SC, Baltzer JL (2002) Tropical forests. Encycl LIFE Sci 1–8. https://doi.org/10.1016/0006-3207(93)90084-E
Toledo-Aceves T, Purata-Velarde S, Peters CM (2009) Regeneration of commercial tree species in a logged forest in the Selva Maya, Mexico. For Ecol Manage 258:2481–2489. https://doi.org/10.1016/j.foreco.2009.08.033
Trauernicht C, Ticktin T, Fraiola H, et al (2018) Active restoration enhances recovery of a Hawaiian mesic forest after fire. For Ecol Manage 411:1–11. https://doi.org/10.1016/j.foreco.2018.01.005
Trethowan LA, Brambach F, Cámara-Leret R, et al (2024) From earthquakes to island area: multi-scale effects upon local diversity. Ecography (Cop) 1–10. https://doi.org/10.1111/ecog.07038
Trethowan LA, Walker BE, Bachman SP, et al (2022) Plant species biogeographic origin shapes their current and future distribution on the world’s highest island mountain. J Ecol 1–8. https://doi.org/10.1111/1365-2745.14022
Ungirwalu A, Awang SA, Murdjoko A (2014) Potensi Pengembangan Agroforestri Tumbuhan Buah Hitam Berbasis Pengetahuan Lokal Etnis Wandamen-Papua?: Prospek Perhutanan Sosial Di Papua Barat. In: Prosiding Seminar Nasional Silvikultur II?: Pembaharuan Silvikultur untuk mendukung Pemulihan Fungsi Hutan menuju Ekonomi Hijau. pp 268–274
Ungirwalu A, Awang SA, Suryanto P, Maryudi A (2017) The ethno-techno-conservation approach in the utilization of Black Fruit (Haplolobus sp.) by the Wandamen ethnic of Papua, Indonesia. Biodiversitas 18:1336–1343. https://doi.org/10.13057/biodiv/d180408
Widiyatno, Budiadi, Suryanto, Rinarno, Prianto, Hendro H& N (2017) Recovery of Vegetation Structure, Soil Nutrients and Late-Succession Species after Shifting Cultivation in Central Kalimantan, Indonesia. J Trop For Sci 29:151–162
Yirdaw E, Monge Monge A, Austin D, Toure I (2019) Recovery of floristic diversity, composition and structure of regrowth forests on fallow lands: implications for conservation and restoration of degraded forest lands in Laos. New For 50:1007–1026. https://doi.org/10.1007/s11056-019-09711-2

Most read articles by the same author(s)

1 2 > >>