Diversity of rhizospheric fungi from Nanhaia speciosa and their capacity to degrade insoluble phosphate and organic manners

##plugins.themes.bootstrap3.article.main##

PHONG XUAN ONG
THIEP VAN NGUYEN
LIEN THUY BUI
NGUYEN THI MINH NGUYET
KHANG TAN DO
GIA HUY TRAN
PHI BANG CAO
HA DUC CHU
NGOC BICH PHAM
THACH VAN PHAN
HONG VIET LA

Abstract

Abstract. Ong PX, Nguyen TV, Bui LT, Nguyet NTM, Do KT, Tran GH, Cao PB, Chu HD, Pham NB, Phan TV, La HV. 2024. Diversity of rhizospheric fungi from Nanhaia speciosa and their capacity to degrade insoluble phosphate and organic manners. Biodiversitas 25: 3585-3595. The rhizosphere is the microenvironment for interactions between plant roots and surrounding microbes. Rhizospheric fungi play a vital role in plant growth through various mechanisms. The aim of this study was to isolate and identify the fungi from the soil around the root of Nanhaia speciosa (Champ. ex Benth.) J.Compton and Schrire and to test their ability to degrade insoluble phosphate, cellulose, and xylan. The result showed that a total 72 fungal species were isolated from the soil of the rhizosphere of N. speciosa. These isolates belonged to six genera, namely Penicillium, Trichoderma, Aspergillus, Talaromyces, Purpureocillium, and Chaetomium. Results showed that 50% of the isolated strains belonged to the genus Penicillium. Moreover, it was also recorded that out of 10 fungal strains, only five fungal strains produced the phosphate decomposition enzyme (+), with the Tv-LHOP3 (Trichoderma virens LHOP3) and Tk-LHOP1 (Trichoderma koningiopsis LHOP1) strains expressed the highest phosphate solubility with the PSI of two strains were 2.22 and 2.18, respectively. All strains exhibited cellulose ability, Pj-LHOP2 (Penicillium janthinellum LHOP2) showed the highest degradation ability with a halo diameter of 7.52 cm, followed by strain Tk-LVHOP1 (Trichoderma koningiopsis LHOP1) with a diameter of 7.38 cm. The xylan degradation ability test demonstrated that the strain Tv-LHOP2 (Trichoderma virens LHOP2) had the highest halo diameter of 8.87 cm, followed by Tk-LHOP1 (Trichoderma koningiopsis LHOP1) had 8.80 cm and Tv-LHOP3 (Trichoderma virens LHOP3) had halo diameter of 8.63 cm. These findings suggest the potential of these fungal strains as biofertilizers to enhance nutrient availability and promote sustainable agricultural practices, particularly in improving the growth and yield of medicinal plants like Nanhaia speciosa.

##plugins.themes.bootstrap3.article.details##

References
Agnieszka S. 2018. Phosphorus microbial solubilization as a key for phosphorus recycling in agriculture. In: Tao Z (eds). Phosphorus-Recovery and Recycling. IntechOpen, Croatia. DOI: 10.5772/intechopen.74920.
Alori ET, Glick BR, Babalola OO. 2017. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8: 971. DOI: 10.3389/fmicb.2017.00971.
Bahram M, Hildebrand F, Forslund SK et al. 2018. Structure and function of the global topsoil microbiome. Nature 560 (7717): 233-237. DOI: 10.1038/s41586-018-0386-6.
Bala K. 2022. Microbial fertilizer as an alternative to chemical fertilizer in modern agriculture. In: Prasad R, Zhang SH (eds). Beneficial microorganisms in agriculture. Springer, Singapore. DOI: 10.1007/978-981-19-0733-3_4.
Bedaiwy MY, Awadalla OA, Metwally MA, Samad A. 2022. Isolation, identification, and detection of ligninolytic capability of some fungi isolated from soil samples in Egypt. Egypt J Exp Biol (Bot) 18 (1): 197-204. DOI: 10.5455/egyjebb.20220629084930.
Bhardwaj N, Kumar B, Verma P. 2019. A detailed overview of xylanases: An emerging biomolecule for current and future prospective. Bioresour Bioprocess 6 (1): 40. DOI: 10.1186/s40643-019-0276-2.
Bhattacharyya C, Roy R, Tribedi P, Ghosh A, Ghosh A. 2020. Biofertilizers as substitute to commercial agrochemicals. In: Prasad MNV (eds). Agrochemicals detection, treatment and remediation. Butterworth, Heinemann. DOI: 10.1016/B978-0-08-103017-2.00011-8.
Chauiyakh O, El Fahime E, Ninich O, Aarabi S, Bouziani M, Chaouch A, Et tahir A. 2023. Short notes: First report of the lignivorous fungus Paecilomyces maximus in Cedrus atlantica M. in Morocco. J Wood Sci 68 (2): 403-412. DOI: 10.37763/wr.1336-4561/68.2.403412.
Chaurasia B. 2019. Biological pretreatment of lignocellulosic biomass (Water hyacinth) with different fungus for enzymatic hydrolysis and bio-ethanol production resource: Advantages, future work and prospects. Acta Sci Agric 5 (3): 89-96. DOI: 10.1016/B978-0-12-815162-4.00007-0.
Christopher M, Sreeja-Raju A, Kooloth-Valappil P, Gokhale DV, Sukumaran RK. 2023. Correction to: Cellulase hyper?producing fungus Penicillium janthinellum NCIM 1366 elaborates a wider array of proteins involved in transport and secretion, potentially enabling a diverse substrate range. Bioenergy Res 16 (1): 74. DOI: 10.1007/s12155-022-10476-4.
Doilom M, Guo JW, Phookamsak R, Mortimer PE, Karunarathna SC, Dong W, Liao CF, Yan K, Pem D, Suwannarach N, Promputtha I, Lumyong S, and Xu JC. 2020. Screening of phosphate-solubilizing fungi from air and soil in Yunnan, China: Four novel species in Aspergillus, Gongronella, Penicillium, and Talaromyces. Front Microbiol 11: 585215. DOI: 10.3389/fmicb.2020.585215.
Elfiati D, Delvian D, Hanum H, Susilowati A, Rachmat HH. 2021. Potential of phosphate solubilizing fungi isolated from peat soils as inoculant biofertilizer. Biodiversitas 22 (6): 3042-3048. DOI: 10.13057/biodiv/d220605.
Elfiati D, Susilowati A, Modes C, Rachmat HH. 2019. Morphological and molecular identification of cellulolytic fungi associated with local raru species. Biodiversitas 20: 2348-2354. DOI: 10.13057/biodiv/d200833.
Fasusi OA, Cruz C, Babalola OO. 2021. Agricultural sustainability: Microbial biofertilizers in rhizosphere management. Agriculture 11 (2): 163. DOI: 10.3390/agriculture11020163.
Han LR. Zhang SX, Zhu CS, Zhang X. 2008. Screening and identification of superior fungus degraded cellulose. J Northwest Agric For Univ 36 (9): 169-174. [Chinese]
Huang Z, Zeng YJ, Chen X, Luo SY, Pu L, Li FZ, Zong MH, Lou WY. 2020. A novel polysaccharide from the roots of Millettia speciosa Champ: Preparation, structural characterization and immunomodulatory activity. Intl J Biol Macromol 145: 547-557. DOI: 10.1016/j.ijbiomac.2019.12.166.
Kumar M, Shankar A, Chaudhary S, Prasad V. 2023. Phosphate solubilizing microorganisms: Multifarious applications. In: Chhabra S, Prasad R, Maddela NR, Tuteja N (eds). In: Plant Microbiome for Plant Productivity and Sustainable Agriculture 37: 245-262. Springer Nature, Singapore. DOI: 10.1007/978-981-19-5029-2_10.
Kumar S, Diksha, Sindhu SS, Kumar R. 2021. Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Curr Res Microb Sci 3: 100094. DOI: 10.1016/j.crmicr.2021.100094.
Li J, Sun X, Li M, Zou J, Bian H. 2022. Effects of stand age and soil organic matter quality on soil bacterial and fungal community composition in Larix gmelinii plantations, Northeast China. Land Degrad Dev 33 (8): 1249-1259. DOI: 10.1002/ldr.4219.
Liu JM, Xiong X, Li, Liu, Li LX, Luo C. 2017. Fungal diversity in the rhizosphere soil of Drepanostachyum luodianense. Mycosystema 36 (2): 260-266. DOI: 10.13346/j.mycosystema.160024.
M’barek HN, Taidi B, Smaoui T, Aziz MB, Mansouri AM, Hajjaj H. 2019. Isolation, screening and identification of ligno-cellulolytic fungi from northern central Morocco. Biotechnol Agron Soc Environ 23 (4): 207-217. DOI: 10.25518/1780-4507.18182.
Méndez-Líter JA, de Eugenio LI, Nieto-Domínguez M, Prieto A, Martínez MJ. 2021. Hemicellulases from Penicillium and Talaromyces for lignocellulosic biomass valorization: A review. J Bioresour Technol 324: 124623. DOI: 10.1016/j.biortech.2020.124623.
Nafaa M, Rizk SM, Aly TAGA, Rashed MAS, Abd El-Moneim D, Bacha AB, Alonazi M, Magdy, M. 2023. Screening and identification of the rhizosphere fungal communities associated with land reclamation in Egypt. Agriculture 13 (1): 215. DOI: 10.3390/agriculture13010215.
Pointing S. 1999. Qualitative methods for the determination of lignocellulolytic enzyme production by tropical fungi. Fungal Divers 2: 17-33.
Prasad A, Dixit M, Meena SK, Suman, Kumar A. 2023. Qualitative and quantitative estimation for phosphate solubilizing ability of Trichoderma isolates: A natural soil health enhancer. Materials Today Proc 81: 360-366. DOI: 10.1016/j.matpr.2021.03.305.
Raja HA, Miller AN, Pearce CJ, Oberlies NH. 2017. Fungal identification using molecular tools: A primer for the natural products research community. J Nat Prod 80: 756-770. DOI: 10.1021/acs.jnatprod.6b01085.
Rilling JI, Acuña JJ, Nannipieri P, Cassan F, Maruyama F, Jorquera MA. 2019. Current opinion and perspectives on the methods for tracking and monitoring plant growth-promoting bacteria. Soil Biol Biochem 130: 205-219. DOI: 10.1016/j.soilbio.2018.12.012.
Rogers SO, Bendich AJ. 1989. Extraction of DNA from plant tissues. In: Gelvin SB, Schilperoort RA, Verma DPS (eds). Plant Molecular Biology Manual. Springer Netherlands, Dordrecht. DOI: 10.1007/978-94-009-0951-9_6.
Sane SA, Mehta SK. 2015. Isolation and evaluation of rock phosphate solubilizing fungi as potential biofertilizer. J Fert Pes 06: 156. DOI: 10.4172/2471-2728.1000156.
Sreeja-Raju A, Christopher M, Kooloth-Valappil P, Kuni-Parambil R, Gokhale, DV, Sankar M, Abraham A, Pandey A, Sukumaran, RK. 2020. Penicillium janthinellum NCIM1366 shows improved biomass hydrolysis and a larger number of CAZymes with higher induction levels over Trichoderma reesei RUT-C30. Biotechnol Biofuels 13 (1): 196. DOI: 10.1186/s13068-020-01830-9.
Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol 38 (7): 3022-3027. DOI: 10.1093/molbev/msab120.
Tolan JS, Foody B. 1999. Cellulase from submerged fermentation. In: Tsao GT, Brainard, AP, Bungay HR et al. (eds). Recent progress in bioconversion of lignocellulosics. Springer Berlin Heidelberg, Berlin, Heidelberg. DOI: 10.1007/3-540-49194-5_3.
Wakelin S, Gupta VV, Harvey P, Ryder M. 2007. The effect of Penicillium fungi on plant growth and phosphorus mobilization in neutral to alkaline soils from southern Australia. Can J Microbiol 53 (1): 106-115. DOI: 10.1139/w06-109.
White T, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds). PCR Protocols: A Guide to Methods and Applications. Academic Press, New York. DOI: 10.1016/B978-0-12-372180-8.50042-1.
Xiao C, Fang Y, Chi R. 2015. Phosphate solubilization in vitro by isolated Aspergillus niger and Aspergillus carbonarius. Rev Chem Intermed 41 (5): 2867-2878. DOI: 10.1007/s11164-013-1395-6.
Yao S, Lan Z, Huang R, Tan Y, Huang D, Gu J, Pan C. 2021. Hormonal and transcriptional analyses provides new insights into the molecular mechanisms underlying root thickening and isoflavonoid biosynthesis in Callerya speciosa (Champ. ex Benth.). Schot Sci Rep 11 (1): 9. DOI: 10.1038/s41598-020-76633-x.
Yu D, Liang X. 2019. Characterization and identification of isoflavonoids in the roots of Millettia speciosa Champ. by UPLC-Q-TOF-MS/MS. Curr Pharm Anal 15 (6): 580-591. DOI: 10.2174/1573412914666180608095922.
Zhang Y, Chen FS, Wu XQ, Luan FG, Zhang LP, Fang XM, Wan SZ, Hu XF, Ye JR. 2018. Isolation and characterization of two phosphate-solubilizing fungi from rhizosphere soil of moso bamboo and their functional capacities when exposed to different phosphorus sources and pH environments. PLoS One 13 (7): e0199625. DOI: 10.1371/journal.pone.0199625.
Zhao W, Wang DD, Huang KC, Liu S, Reyila M, Sun YF, Li JN, Cui BK. 2023. Seasonal variation in the soil fungal community structure of Larix gmelinii forests in Northeast China. Front Microbiol 14: 1106888. DOI: 10.3389/fmicb.2023.1106888.

Most read articles by the same author(s)