Genetic diversity of mud crab (Scylla paramamosain) in Vietnam based on cox1 gene fragments

##plugins.themes.bootstrap3.article.main##

LE TAN PHAT
HOANG TAN QUANG
NGUYEN VAN HUY
MAC NHU BINH
TON THAT CHAT

Abstract

Abstract. Phat LT, Quang HT, Huy NV, Binh MN, Chat TT. 2024. Genetic diversity of mud crab (Scylla paramamosain) in Vietnam based on cox1 gene fragments. Biodiversitas 25: 4379-4388. Mud crab (Scylla paramamosain Estampador 1950) is a commonly found resource throughout Vietnam, with increasing exports each year. However, production is yet to be able to meet consumer demand, which continues to increase, leading to consistently high market prices. Accurately estimating genetic variation in mud crab populations is crucial for developing conservation management strategies for highly exploited fishery resources. In this study, genetic variations and population structure of S. paramamosain were examined by analyzing the nucleotide sequences of a 780 base pairs (bp) region of the mitochondrial cox1 gene from three populations across thirteen collection sites in Vietnam, covering a diverse geographical range. A total of 45 individuals were examined, the cox1 gene sequences were aligned, and 17 haplotypes were identified, with two of these haplotypes being shared by the populations. The haplotype diversity ranged from 0.57143 (Thua Thien Hue) to 0.80000 (Ca Mau). The haplotype network displayed that the haplotypes were divided into two clusters with Hap_3 as the center. Pairwise Fst values between populations ranged low, from 0-0.01266. The AMOVA results highlighted that within-population variation (99.85%) was higher than among-population variation (0.15%). Findings from neutral tests and mismatch analysis suggested implications for mud crab population dynamics. S. paramamosain in Vietnam showed high genetic diversity within the populations, as shown by low genetic variation and the significant gene flow between populations when analyzing the cox1 gene. These results underscore the interconnectedness of the mud crab population and provide a foundation for establishing an enduring mud crab farming initiative in Vietnam.

##plugins.themes.bootstrap3.article.details##

References
Aini NK, Wardiatno Y, Effendi H, Mashar A, Madduppa H. 2021. High genetic diversity and mixing of coastal horseshoe crabs (Tachypleus gigas) across major habitats in Sundaland, Indonesia. PeerJ 9: e11739. DOI: 10.7717/peerj.11739.
Avianto, Sulistiono, Setyobudiandi I. 2013. Habitat characteristics and potency of mud crabs Scylla serrata, S. transquaberica, and S. olivacea in Cibako Mangrove Forest, Garut District, West Java. Bonorowo Wetlands 3: 55-72. DOI: 10.13057/bonorowo/w030201.
Birader K. 2023. Genetic diversity and the adaptation of species to changing environments. J Biodivers Endang Species 11: 474. DOI: 10.37421/2332-2543.2023.11.474.
Chen F, Wang K. 2019. Characterization of the innate immunity in the mud crab Scylla paramamosain. Fish Shellfish Immunol 93: 436-448. DOI: 10.1016/j.fsi.2019.07.076.
Dung TQ, Quang HT, Nguyen PTT, Trung NT, Huy ND, Quyen BV. 2023. Assessment of genetic variation in the pond loach Misgurnus anguillicaudatus (Cantor, 1842), based on COI gene fragments. Appl Ecol Environ Res 22 (1): 933-947. DOI: 10.15666/aeer/2201_933947.
Eischeid AC, Stadig SR, Handy SM, Fry FS, Deeds J. 2016. Optimization and evaluation of a method for the generation of DNA barcodes for the identification of crustaceans. LWT 73: 357-367. DOI: 10.1016/j.lwt.2016.06.033.
Filonzi L, Ardenghi A, Rontani PM, Voccia A, Ferrari C, Papa R, Bellin N, Nonnis Marzano F. 2023. Molecular barcoding: A tool to guarantee correct seafood labelling and quality and preserve the conservation of endangered species. Foods 12: 2420. DOI: 10.3390/foods12122420.
Gao W, Cui W, Wu F, Chen H, Liu S, Guan M, Saqib HS, Ye S, Ikhwanuddin M, Ma H. 2023. Genetic diversity and differences among three F1 families and two wild populations of genus Scylla using microsatellite markers. Fishes 8: 18. DOI: 10.3390/fishes8010018.
Gíslason ÓS, Svavarsson J, Halldórsson HP, Pálsson S. 2013. Nuclear mitochondrial DNA (numt) in the Atlantic rock crab Cancer irroratus Say, 1817 (Decapoda, Cancridae). Crustaceana 86 (5): 537-552. DOI: 10.1163/15685403-00003191.
Grant WAS, Bowen BW. 1998. Shallow population histories in deep evolutionary lineages of marine fishes: Insights from sardines and anchovies and lessons for conservation. J Heredity 89 (5): 415-426. DOI: 10.1093/jhered/89.5.415.
He L, Zhang A, Weese D, Zhu C, Jiang C, Qiao Z. 2010. Late Pleistocene population expansion of Scylla paramamosain along the coast of China: A population dynamic response to the Last Interglacial sea level highstand. J Exp Mar Biol Ecol 385 (1-2): 20-28. DOI: 10.1016/j.jembe.2010.01.019.
Hongyu M, Chunyan M, Lingbo M, Xincang L, Yuanyou L. 2016. Microsatellite markers in the mud crab (Scylla paramamosain) and their application in population genetics and marker- assisted selection. In: Ibrokhim YA (eds). Microsatellite Markers. IntechOpen, Rijeka. DOI: 10.5772/65041.
Huervana JJC, Kano Y, Ando D, Onikura N, Kurita Y. 2023. Preliminary assessment of genetic variation in the Japanese endemic freshwater crab, Geothelphusadehaani, based on mitochondrial DNA sequences. Biodivers Data J 11: e97438. DOI: 10.3897/BDJ.11.e97438.
Khan MMH, Rafii MY, Ramlee SI, Jusoh M, Al Mamun M, Halidu J. 2021. DNA fingerprinting, fixation-index (Fst), and admixture mapping of selected Bambara groundnut (Vigna subterranea [L.] Verdc.) accessions using ISSR markers system. Sci Rep 11: 14527. DOI: 10.1038/s41598-021-93867-5.
Letunic I, Bork P. 2021. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49 (W1): W293-W296. DOI: 10.1093/nar/gkab301.
Mehraj H, Sharma S, Ohnishi K, Shimasaki K. 2017. Study on inter-taxon population structure and diversity variation of hosta inferring from trnG-trnS regional cpDNA. Annal Agric Sci 62 (2): 211-220. DOI: 10.1016/j.aoas.2017.12.003.
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R. 2020. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37 (5): 1530-1534. DOI: 10.1093/molbev/msaa015.
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating Maximum-Likelihood Phylogenies. Mol Biol Evol 32: 268-274. DOI: 10.1093/molbev/msu300.
Pang X, Fu W, Feng J, Guo B, Lin X, Lu X. 2023. The complete mitochondrial genome of the hermit crab Diogenes edwardsii (Anomura: Diogenidae) and phylogenetic relationships within Infraorder Anomura. Genes 14 (2): 470. DOI: 10.3390/genes14020470.
Ramírez-Soriano A, Ramos-Onsins SE, Rozas J, Calafell F, Navarro A. 2008. Statistical power analysis of neutrality tests under demographic expansions, contractions and bottlenecks with recombination. Genetics 179: 555-567. DOI: 10.1534/genetics.107.083006.
Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34 (12): 3299-3302. DOI: 10.1093/molbev/msx248.
Shakawi AMHA, Hassan R, Mustapah DS. 2022. Effects of water parameters on population structure of mud crab from Buntal Mangroves, Kuching, Sarawak, Malaysia: A GLM analysis. Biodiversitas 23: 2580-2585. DOI: 10.13057/biodiv/d230539.
Smaragdov MG, Kudinov AA, Uimari P. 2018. Assessing the genetic differentiation of Holstein cattle herds in the Leningrad region using Fst statistics. Agirc Food Sci 27: 96-101. DOI: 10.23986/afsci.69777.
Su S, Nsekanabo JD, Munganga BP, He X, Li J, Yu F, Wang M, Tang Y. 2023. Genetic diversity and population structure of the Chinese mitten crab (Eriocheir sinensis) from six different lakes using microsatellites. Fishes 8 (5): 220. DOI: 10.3390/fishes8050220.
Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol 38 (7): 3022-3027. DOI: 10.1093/molbev/msab120.
Wang W, Ma C, Chen W, Jin Z, Zhao M, Zhang F, Liu Z, Ma L. 2020. Population genetic diversity of mud crab (Scylla paramamosain) from southeast coastal regions of China based on mitochondrial COI gene sequence. Gene 751: 144763. DOI: 10.1016/j.gene.2020.144763.
Zhang FY, Ma LB, Qiao ZG, Chen LQ. 2008. Multiple nuclear pseudogenes of mitochondrial cytochrome oxidase I gene in Scylla paramamosain (Decapoda : Portunidae). J Mol Cell Biol 41 (2): 155-161. [Chinese]

Most read articles by the same author(s)