Gamma-ray irradiation alters the morphology, anatomy and agronomic characters of the groundnut (Arachis hypogaea) bison cultivar in M1 generation

##plugins.themes.bootstrap3.article.main##

NILAHAYATI
RD. SELVY HANDAYANI
NAZIMAH
NENI
DIMAS SAPUTRA

Abstract

Abstract. Nilahayati, Handayani RS, Nazimah, Neni, Saputra D. 2024. Gamma-ray irradiation alters the morphology, anatomy and agronomic characters of the groundnut (Arachis hypogaea L.) bison cultivar in M1 generation. Biodiversitas 25: 4179-4189. Groundnut is the world's most important agricultural commodity, serving as a major source of protein and vegetable oil. Enhancing the genetic diversity of groundnuts is essential for improving yield, early maturity and environmental resistance such as drought tolerance. This study aims to determine the effect of gamma irradiation on the morphological and agronomic diversity of bison groundnut cultivar in the M1 generation. Gamma irradiation was carried out at the Radiation Process Technology Research Center, National Research and Innovation Agency of Indonesia, Jakarta. This research was designed using a single-factor Randomized Complete Block Design. The dose of gamma irradiation was 0 Gray (Gy), 100 Gy, 200 Gy, and 300 Gy, with three replications. Consequently, there were a total of 12 experimental units. We generated 600 groundnut plants in total. The observed variables included morphological diversity such as variation in leaf, stem, seed color and seed shape. The agronomic variability was recorded to the seed growth percentage, plant height, number of branches, flowering age, harvesting age, number of pods, number of empty pods, dry pod weight per plant, dry seed weight per plant, 100 seed weight per plot, dry seed weight per plot, length, width, and number of leaf stomata. The results showed that gamma irradiation treatment induced morphological and agronomic changes in the bison groundnut cultivar. Morphological changes included alterations in leaf color, pod shape, and seed coat color. Higher doses of gamma irradiation can negatively impact certain agronomic traits such as plant height and yield, beginning at 200 Gy, but at 100 Gy all parameters slightly increased. Higher dose of gamma irradiation also delayed the flowering and harvesting time. Further studies are also needed to evaluate the heritability of these traits in the M2 generation to ensure the stability of desirable traits.

##plugins.themes.bootstrap3.article.details##

References
Ahmad S, Adil M, Khan AH, Rehman G, Maryam B. Salimullah, Ambrin, Sher AA, Rahman A, Ullah H. 2023. Assessment of induced variability of yield contributing on vegetative characteristics and yield attributes of Sunflower (Helianthus annuus L.). Biosci Res 20 (2): 415-421.
Akhtar S, Ahsan M, Ashgar MJ, Abbas G, Ahmad F, Rizwan M. 2015. Comparison of hybridization and induced mutation as sources of creating genetic variability for various traits in lentil (Lens culinaris Medik). Sabrao J Breed Genet 47 (4): 394-405.
Amir K, Hussain S ,Shuaib M, Hussain F, Urooj Z, Khan WM, Zeb U, Ali K, Zeb MA, Hussain F. 2017. Effect of gamma irradiation on okra (Abelmoschus esculentus L.). Acta Ecol Sin 38 (5): 1-6. DOI: 10.1016/j.chnaes.2018.02.002.
Azzam CR, Sultan FM, Rizk MS, Ahmed MZS, Shafk, Ibrahim, Noureldeen A, Ali EF, Darwish H and Khaled. 2023. SRAP and IRAP revealed molecular characterization and genetic relationships among cowpea (Vigna unguiculata L.) irradiated by gamma-ray. Beni-Suef Univ J Basic Appl Sci 12 (1): 109. DOI: 10.1186/s43088-023-00448-8.
Bajpay A, Dwivedi DH. 2019. Gamma ray induced foliage variegation and anatomical aberrations in chrysanthemum (Dendranthema grandiflora T.) cv. Maghi. J Phamr Phytochem 8 (4): 871-874.
Balasubramanian P, Subbulakshmi B, Balmurugan M, Gurumeenakshi G, Prasanth RC, Deepika R. Surya R. 2023. Nutritional profiling and its significance in groundnut. Asian J Diary Food Res 2136: 1-9. DOI: 10.18805/ajdfr.DR-2136.
Bara MB, Chaurasia AK, Verma P. 2017. Gamma rays effect on frequency and spectrum of chlorophyll mutation in chickpea (Cierarletinum L.). J Pharmacogn Phytochem 6 (3): 590-591
Cahyaningsih AP, Etikawati N, Yunus A. 2022. Morphological characters variation of Indonesian accession Echinacea purpurea in response to gamma-ray irradiation. Biodiversitas 23 (10): 5351-5359. DOI: 10.13057/biodiv/d231045.
Celik O, Atak C. 2017. Applications of ionizing radiation in mutation breeding. In: Maghraby AM (eds). New Insights on Gamma Rays. IntechOpen. DOI: 10.5772/62969.
Choi HI, Han SM, Jo YD, Hong MJ, Kim SH, Kim JB. 2021. Effects of acute and chronic gamma irradiation on the cell biology and physiology of rice plants. Plants 10 (3): 439. DOI: 10.3390/plants10030439.
Du Y, Feng Z, Wang J, Jin W, Wang Z, Guo T, Chen Y, Feng H, Yu L, Li W. 2022. Frequency and spectrum of mutations induced by gamma rays revealed by phenotype screening and whole-genome re-sequencing in Arabidopsis thaliana. Intl J Mol Sci 23 (2): 654. DOI: 10.3390/ijms23020654.
Dwinanda P, Syukur, Suliansyah I. 2020. Induction of mutations with gamma ray radiation to improve the characteristics of wheat [Triticum aestivum L.] genotype IS-Jarissa. IOP Conf Ser: Earth Environ Sci 497: 012013. DOI: 10.1088/1755-1315/497/1/012013.
Gaafar RM, Hamouda M, Badr A. 2016. Seed coat color, weight and eye pattern inheritance in gamma-rays induced cowpea M2 mutant line. J Genet Eng Biotechnol 14: 61-68. DOI: 10.1016/j.jgeb.2015.12.005.
Ganesan A, Dhanarajan A, Sellapillai L. 2022. Effect of gamma irradiation on quantitative traits and post harvesting analysis of groundnut (Arachis hypogaea L.) seed in M1 generation. Plant Sci Today 9 (4): 1074-1084. DOI: 10.14719/pst.1785.
Gnanamurthy S, Dhanavel D. 2014. Effect of EMS on induced morphological mutants and chromosomal variation in cowpea (Vigna unguiculata L. Walp). Intl Lett Nat Sci 17: 33-43. DOI: 10.18052/www.scipress.com/ILNS.22.33.
Gustafsson A. 1940. The Mutation System of The Chlorophyll Apparatus. Lunds Universitets Årsskrift, Lund, Sweden.
Habib SH, Akanda AL, Roy P, Kulsum U, Rohman M, Rahman MM. 2022. Mutant divergence in sunflower induced through gamma radiation. J Crop Sci Biotechnol 26 (3): 317-325. DOI: 10.1007/s12892-022-00186-w.
Handini E, Aprilianti P, Widiarsih S. 2021. Characterization of the stomata and root of Grammatophyllum scriptum (L.) Blume plantlet resulted from exposed protocorms to gamma ray irradiation. Buletin Kebun Raya 24 (3): 117-125. DOI: 10.14203/bkr.v24i3.736.
Kiani D, Borzouei A, Ramezanpour S, Soltanloo H, Saadati S. 2022. Application of gamma irradiation on morphological, biochemical, and molecular aspects of wheat (Triticum aestivum L.) under different seed moisture contents. Sci Rep 12: 11082. DOI: 10.1038/s41598-022-14949-6.
Majeed A, Muhammad Z, Ullah R. 2016. Growth and yield response of field pea (Pisum sativum L.) to gamma irradiation stress. Plant Breed Seed Sci 74: 27-35. DOI: 10.1515/plass-2016-0012.
Majeed A, Muhammad Z, Ullah R, Ali H. 2018. Gamma irradiation: Germination, and general growth characteristic in plants-A review. Pak J Bot 50 (6): 2449-2453.
Majeed A, Muhammad Z, Ullah R, Ullah Z, Ullah R, Chaudhry Z, Siyar S. 2017. Effect of gamma irradiation on growth and post-harvest storage of vegetables. PSM Biol Res 2 (1): 30-35.
Mamo T, Singh AK, Singh A, Mahama AA. 2023. Groundnut Breeding. In: Suza WP, Lamkey KR (eds). Crop Improvement. Iowa State University Digital Press, Iowa.
Manova V, Gruszka D. 2015. DNA damage and repair in plants-from models to crops. Front Plant Sci 6: 885. DOI: 10.3389/fpls.2015.00885.
Mishra K, Rashmi 2022. Review on health benefits of peanut. Intl J Innov Res Eng Manag 9 (1): 273-276. DOI: 10.55524/ijirem.2022.9.1.54.
Muhallilin I, Aisyah SI, Sukma D. 2019. The diversity of morphological characteristics and chemical content of Celosia cristata plantlets due to gamma ray irradiation. Biodiversitas 20 (3): 862-866. DOI: 10.13057/biodiv/d200333.
Nilahayati, Handayani RS, Nazimah, Harahap MA, Irawan G, Anggraini A, Siregar, NK. 2024. Induction of genetic diversity in gepak kuning soybean cultivar and M.1.1.3 line using ethyl methane sulfonate in M1 generation. IOP Conf Ser: Earth Environ Sci 1362: 012024. DOI: 10.1088/1755-1315/1362/1/012024.
Nilahayati, Nazimah, Handayani, RD, Syahputra J, Rizky M. 2022. Agronomic diversity of several soybean putative mutant lines resulting from gamma-rays irradiation in M6 generation. Nusantara Biosci 14 (1): 34-39. DOI: 10.13057/nusbiosci/n140104.
Nilahayati, Rosmayati, Hanafiah, DS, Harahap F. 2015. Induction of genetic variability in kipas putih soybean with gamma ray irradiation M1 generation. Proceedings of The Almuslim International Conference on Science, Technology and Society, Universitas Almuslim, Bireun, November 2015.
Nilahayati, Rosmayati, Hanafiah, DS, Harahap F. 2016. Gamma irradiation induced chlorophyll and morphological mutation in Kipas Putih soybean. Basic Appl Res 30 (3): 74-79.
Nilahayati, Rosmayati, Hanafiah, DS, Harahap F. 2019. The genotype selection of M3 generation of Kipas Putih soybean with gamma-rays irradiation on agronomic characters, early maturity and high yielding mutants. Bulgarian J Agric Sci 25: 97-102
Nilahayati, Rosnina, Syahpuitra J. 2022. RAPD analysis for genetic variability of soybean mutant resulting from gamma rays irradiation in M6 generation. Agric Sci Digest 42: 723-728. DOI: 10.18805/ag.DF-441.
Nura S, Adamu AK, Adelanwa MA, Usman IS, Negbenebor HE, Aminu MA, Shehu K. 2021. Mutagenic effectiveness and efficiency of gamma rays on variability for yield attributing traits in funio. Sci World J 16 (1): 41-45
Pramanik B, Debnath S, Rahimi M, Helal MMU, Hasan R. 2023. Morphometric frequency and spectrum of gamma-ray-induced chlorophyll mutants identified by phenotype and development of novel variants in lentil (Lens culinaris Medik.). PLoS One 18 (6): e0286975. DOI: 10.1371/journal.pone.0286975.
Saibari I, Barrijal S. Mouhib M, Belkadi N, Hamim A. 2023. Gamma irradiation induced genetic variability and its effects on the phenotypic and agronomic traits of groundnut (Arachis hypogaea L.). Front Genet 14: 1124632. DOI: 10.3389/fgene.2023.1124632.
Sasipriya S, Gangaprasad S, Kumar BM, Nagarajappa A, Basavaraj H, Babu BN. 2023. Spectrum of chlorophyll mutations and morphological variations in Abelmoschus esculentus L. induced through gamma radiation. J Hortic Sci 18: 233-239. DOI: 10.24154/jhs.v18i1.2170.
Spencer LMM, Forster BP, Jankuloski L. 2018. Manual on Mutation Breeding. International Atomic Energy Agency, Vienna.
Thenuja M, Sutharsan S, Rifnas LM. 2024. Effects of different levels of gamma radiation on growth and yield characteristics of groundnut. Asian J Res Agric For 10: 1-10. DOI: 10.9734/ajraf/2024/v10i1264.
Tiwari AK, Sharma D, Das BK, Kumar V, Sahu P, Baghel S, Singh S. 2018. Improvement of traditional local rice varieties through induced mutations using gamma radiations. Intl Interdiscip J Res 8 (2): 405-412. DOI: 10.13140/RG.2.2.21569.40801.
Tshilenge-Lukanda L, Biola CF, Tshiyoyi-Mpunga A, Mudibu J, Ngoie-Lubwika M, Mukendi-Tshibingu R, Kalonji-Mbuyi A. 2012. Radio-sensitivity of some groundnut (Arachis hypogaea L.) genotypes to gamma irradiation: Indices for use as improvement. Biotechnol J Intl 2 (3): 169-178. DOI: 10.9734/BBJ/2012/1459.
Vanmathi S, Arulbalachandran D, Soundarya V. 2021. Effects of gamma radiation on quantitative traits and genetic variation of three successive generations of cowpea (Vigna unguiculata (L.) Walp.). Plant Sci Today 8 (3): 578-589. DOI: 10.14719/pst.2021.8.3.1054.
Yadav R, Gorathoki S, Dhakal SBP, Shah A, Poudel S. 2021. A review on overview role of mutation in plant breeding. Rev Food Agric 2 (1): 39-42. DOI: 10.26480/rfna.01.2021.39.42.