Amino acid profile and potential utilization purposes of albumin from four types of freshwater fish in Makassar, South Sulawesi, Indonesia

##plugins.themes.bootstrap3.article.main##

NURFAIDAH
ANDI NOOR ASIKIN
KASMIATI
ANGRAENI

Abstract

Abstract. Nurfaidah, Asikin AN, Kasmiati, Angraeni. 2024. Amino acid profile and potential utilization purposes of albumin from four types of freshwater fish in Makassar, South Sulawesi, Indonesia. Biodiversitas 25: 4199-4207. Albumin, a high-quality protein, is known for its complete amino acid profile, which is essential for numerous biological functions, including immune response and nutritional status maintenance. This study investigates the amino acid composition of albumin in four freshwater fish species commonly found in Indonesia: Cyprinus carpio, Pangasius pangasius, Channa striata, and Trichopodus trichopterus to asses their potential utilization in sustainable food resources and nutritional and health-related products. Albumin extraction was performed using homogenization and incubation techniques, followed by amino acid analysis using High-Performance Liquid Chromatography (HPLC). The results revealed the presence of 18 amino acids, including 9 essential and 9 non-essential amino acids. The most abundant amino acids were glutamic acid, aspartic acid, leucine, and lysine, with lysine being particularly noteworthy for its role in wound healing and protein synthesis. Significant variations in the amino acid composition were observed across the species, influenced by factors such as diet, habitat, and species-specific physiology. Pangasius pangasius exhibited the highest lysine content (12.01%), while C. carpio had the highest glutamic acid content (24.55%) of total amino acid. These findings suggest that the albumin from these freshwater fish species is a valuable source of high-quality protein, with potential applications in developing nutraceuticals, functional foods, and dietary supplements aimed at improving health and nutritional status. Importantly, the study highlights the potential of these fish species as a sustainable source of protein, contributing to food security and supporting the development of affordable, protein-rich products that can enhance public health while reducing the reliance on conventional livestock-based proteins. This study provides new insights into the amino acid composition of fish albumin from Indonesian freshwater species, contributing to the broader understanding of the nutritional value of local fish resources and their role in promoting sustainable food systems.

##plugins.themes.bootstrap3.article.details##

References
Akram, M., Daniyal, M., Ali, A., Zainab, R., Muhammad Ali Shah, S., Munir, N., & Mahmood Tahir, I. 2020. Role of Phenylalanine and Its Metabolites in Health and Neurological Disorders. Synucleins - Biochemistry and Role in Diseases, 1–13. https://doi.org/10.5772/intechopen.83648
Alissianto, Y. R., Sandriani, Z. A., Rahardja, B. S., Agustono, & Rozi. 2018. The effect of amino acid lysine and methionine addition on feed toward the growth and retention on mud crab (Scylla serrata). IOP Conference Series: Earth and Environmental Science, 137(1). https://doi.org/10.1088/1755-1315/137/1/012059
AOAC. 2023. Official Methods of Analysis of The Association. Official Analytical Chemists 22th Ed (22nd ed.). AOAC International.
Bauerle, M. R., Schwalm, E. L., & Booker, S. J. 2015. Mechanistic diversity of radical S-adenosylmethionine (SAM)-dependent methylation. Journal of Biological Chemistry, 290(7), 3995–4002. https://doi.org/10.1074/jbc.R114.607044
Bharadwaj, S., Ginoya, S., Tandon, P., Gohel, T. D., Guirguis, J., Vallabh, H., Jevenn, A., & Hanouneh, I. 2016. Malnutrition: Laboratory markers vs nutritional assessment. Gastroenterology Report, 4(4), 272–280. https://doi.org/10.1093/gastro/gow013
Bogard, J. R., Thilsted, S. H., Marks, G. C., Wahab, M. A., Hossain, M. A. R., Jakobsen, J., & Stangoulis, J. 2015. Nutrient composition of important fish species in Bangladesh and potential contribution to recommended nutrient intakes. Journal of Food Composition and Analysis, 42, 120–133. https://doi.org/10.1016/J.JFCA.2015.03.002
BPOM. 2019. Peraturan Badan Pengawas Obat dan Makanan Nomor 1 tentang Perubahan atas Peraturan Badan Pengawas Obat dan Makanan Nomor 28 tahun 2017 tentang Rencana Strategis Badan Pengawas Obat dan Makanan tahun 2015-2019. Badan Pengawas Obat dan Makanan.
Brosnan, M. E., & Brosnan, J. T. 2020. Histidine metabolism and function. Journal of Nutrition, 150, 2570S-2575S. https://doi.org/10.1093/jn/nxaa079
Castro, J. J., Arriola Apelo, S. I., Appuhamy, J. A. D. R. N., & Hanigan, M. D. 2016. Development of a model describing regulation of casein synthesis by the mammalian target of rapamycin (mTOR) signaling pathway in response to insulin, amino acids, and acetate. Journal of Dairy Science, 99(8), 6714–6736. https://doi.org/10.3168/jds.2015-10591
Cherry, P., O’hara, C., Magee, P. J., Mcsorley, E. M., & Allsopp, P. J. 2019. Risks and benefits of consuming edible seaweeds. Nutrition Reviews, 77(5), 307–329. https://doi.org/10.1093/nutrit/nuy066
Correia, A. S., & Vale, N. 2022. Tryptophan Metabolism in Depression: A Narrative Review with a Focus on Serotonin and Kynurenine Pathways. International Journal of Molecular Sciences, 23(15). https://doi.org/10.3390/ijms23158493
Cruzat, V., Rogero, M. M., Keane, K. N., Curi, R., & Newsholme, P. 2018. Glutamine: Metabolism and immune function, supplementation and clinical translation. Nutrients, 10(11), 1–31. https://doi.org/10.3390/nu10111564
Davidson, M., Rashidi, N., Nurgali, K., & Apostolopoulos, V. 2022. The Role of Tryptophan Metabolites in Neuropsychiatric Disorders. International Journal of Molecular Sciences, 23(17). https://doi.org/10.3390/ijms23179968
de Paz-Lugo, P., Lupiáñez, J. A., & Meléndez-Hevia, E. 2018. High glycine concentration increases collagen synthesis by articular chondrocytes in vitro: acute glycine deficiency could be an important cause of osteoarthritis. Amino Acids, 50(10), 1357–1365. https://doi.org/10.1007/s00726-018-2611-x
de Paz-Lugo, P., Lupiáñez, J. A., Sicilia, J., & Meléndez-Hevia, E. 2023. Control analysis of collagen synthesis by glycine, proline and lysine in bovine chondrocytes in vitro – Its relevance for medicine and nutrition. Biosystems, 232, 105004. https://doi.org/10.1016/J.BIOSYSTEMS.2023.105004
Elango, R. 2020. Methionine Nutrition and Metabolism?: The Journal of Nutrition, 150, 2518S–2523S.
Frezza, C., & Mauro, C. 2015. The metabolic challenges of immune cells in health and disease Christian. Frontiers in Immunology Received:, 6. https://doi.org/10.3389/fimmu.2015.00293
Gardner, C. D., Hartle, J. C., Garrett, R. D., Offringa, L. C., & Wasserman, A. S. 2019. Maximizing the intersection of human health and the health of the environment with regard to the amount and type of protein produced and consumed in the United States. Nutrition Reviews, 77(4), 197–215. https://doi.org/10.1093/nutrit/nuy073
Gauthankar, M., Khandeparker, R., Shivaramu, M. S., Salkar, K., Sreepada, R. A., & Paingankar, M. 2021. Comparative assessment of amino acids composition in two types of marine fish silage. Scientific Reports, 11(1), 1–10. https://doi.org/10.1038/s41598-021-93884-4
Hole?cek, M. 2020. Histidine in Health and Disease: Metabolism, Physiological Importance, and Use as a Supplement Milan. Nutrients, 12(848).
Hole?ek, M. 2022. Serine Metabolism in Health and Disease and as a Conditionally Essential Amino Acid. Nutrients, 14(9). https://doi.org/10.3390/nu14091987
Hole?ek, M. 2023. Aspartic Acid in Health and Disease. Nutrients, 15(18). https://doi.org/10.3390/nu15184023
Hosen, A., Al-Mamun, A., Robin, M. A., Habiba, U., & Sultana, R. (2021). Maillard Reaction: Food Processing Aspects. North American Academic Research, 4(9), 44–52. https://doi.org/10.5281/zenodo.5516169
Hua, K., Suwendi, E., & Bureau, D. P. 2019. Effect of body weight on lysine utilization efficiency in Nile Tilapia (Oreochromis niloticus). Aquaculture, 505(September 2018), 47–53. https://doi.org/10.1016/j.aquaculture.2019.02.030
Ji, J., Xu, Y., Zheng, M., Luo, C., Lei, H., Qu, H., & Shu, D. 2019. Methionine Attenuates Lipopolysaccharide-Induced Inflammatory Responses via DNA Methylation in Macrophages. ACS Omega, 4(1), 2331–2336. https://doi.org/10.1021/acsomega.8b03571
Kimball, S. R., & Jefferson, L. S. 2006. Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. Journal of Nutrition, 136(1), 227–231. https://doi.org/10.1093/jn/136.1.227s
Li, X., Ma, J., Li, H., Li, H., Ma, Y., Deng, H., & Yang, K. 2024. Effect of ?-alanine on the athletic performance and blood amino acid metabolism of speed-racing Yili horses. Frontiers in Veterinary Science, 11(February). https://doi.org/10.3389/fvets.2024.1339940
Lindseth, G., Helland, B., & Caspers, J. 2015. The effects of dietary tryptophan on affective disorders. Archives of Psychiatric Nursing, 29(2), 102–107. https://doi.org/10.1016/j.apnu.2014.11.008
Mann, G., Mora, S., Madu, G., & Adegoke, O. A. J. 2021. Branched-chain Amino Acids: Catabolism in Skeletal Muscle and Implications for Muscle and Whole-body Metabolism. Frontiers in Physiology, 12(July). https://doi.org/10.3389/fphys.2021.702826
Mariotti, F. 2017. Vegetarian and Plant-Based Diets in Health and Disease Prevention. Academic Press.
Marques, B. L., Oliveira-Lima, O. C., Carvalho, G. A., de Almeida Chiarelli, R., Ribeiro, R. I., Parreira, R. C., da Madeira Freitas, E. M., Resende, R. R., Klempin, F., Ulrich, H., Gomez, R. S., & Pinto, M. C. X. 2020. Neurobiology of glycine transporters: From molecules to behavior. Neuroscience and Biobehavioral Reviews, 118(April), 97–110. https://doi.org/10.1016/j.neubiorev.2020.07.025
Martí i Líndez, A. A., & Reith, W. 2021. Arginine-dependent immune responses. Cellular and Molecular Life Sciences, 78(13), 5303–5324. https://doi.org/10.1007/s00018-021-03828-4
Matthews, D. E. 2020. Review of lysine metabolism with a focus on humans. Journal of Nutrition, 150, 2548S-2555S. https://doi.org/10.1093/jn/nxaa224
Mehta, B. M., & Deeth, H. C. 2016. Blocked Lysine in Dairy Products: Formation, Occurrence, Analysis, and Nutritional Implications. Comprehensive Reviews in Food Science and Food Safety, 15(1), 206–218. https://doi.org/10.1111/1541-4337.12178
Mohanty, B., Mahanty, A., Ganguly, S., Sankar, T. V., Chakraborty, K., Rangasamy, A., Paul, B., Sarma, D., Mathew, S., Asha, K. K., Behera, B., Aftabuddin, M., Debnath, D., Vijayagopal, P., Sridhar, N., Akhtar, M. S., Sahi, N., Mitra, T., Banerjee, S., … Sharma, A. P. 2014. Amino Acid Compositions of 27 Food Fishes and Their Importance in Clinical Nutrition. Journal of Amino Acids, 2014, 1–7. https://doi.org/10.1155/2014/269797
Moldovan, O. L., Sandulea, A., Lungu, I. A., Gâz, ?erban A., & Rusu, A. 2023. Identification of Some Glutamic Acid Derivatives with Biological Potential by Computational Methods. Molecules, 28(10). https://doi.org/10.3390/molecules28104123
Novia, S., Isa, M., & Razali, R. 2014. Description of Depik Fish (Rasbora Tawarensis) Lipid Content in Laut Tawar Lake Aceh Tengah. Jurnal Medika Veterinaria, 8(2), 2–3. https://doi.org/10.21157/j.med.vet..v8i2.3319
Nurfaidah, Metusalach, Mahendradatta, M., Sukarno, Sufardin, Fahrizal, A., & Sulfiana. 2024. Profile of Proximate, Amino Acid, and Fatty Acids of Complementary Food with Fish Meal Raw Ingredients. Jurnal Pengolahan Hasil Perikanan Indonesia, 27(5), 431–445. https://doi.org/10.17844/JPHPI.V27I5.50098
Nurfaidah, Metusalach, Sukarno, & Mahendradatta, M. 2021. Protein and albumin contents in several freshwater fish species of Makassar, South Sulawesi, Indonesia. International Food Research Journal, 28(4), 745–751. https://doi.org/10.47836/ifrj.28.4.11
Ochiai, Y., & Ozawa, H. 2020. Biochemical and physicochemical characteristics of the major muscle proteins from fish and shellfish. Fisheries Science, 86(5), 729–740. https://doi.org/10.1007/s12562-020-01444-y
Petersen, K. F., Dufour, S., Cline, G. W., & Shulman, G. i. 2019. Regulation of Hepatic Mitochondrial Oxidation during Starvation in Humans. The Journal of Clinical Investigation, 129(11), 4671–4675.
Prastari, C., Yasni, S., & Nurilmala, M. 2017. Characterization of snakehead fish protein that’s potential as antihyperglikemik. Jurnal Pengolahan Hasil Perikanan Indonesia, 20(2), 413. https://doi.org/10.17844/jphpi.v20i2.18109
Pratama, R. ., Rostini, I., & Rochima, E. 2017. Amino acid profile and volatile components of fresh and steamed vaname shrimp (Litopenaeus vannamei). Prosiding 1st International Conference on Food Security Innovation (ICFSI), 57–68.
Pratama, W. W., Nursyam, H., Hariati, A. M., Islamy, R. A., & Hasan, V. 2020. Short communication: Proximate analysis, amino acid profile and albumin concentration of various weights of giant snakehead (channa micropeltes) from kapuas hulu, west kalimantan, Indonesia. Biodiversitas, 21(3), 1196–1200. https://doi.org/10.13057/biodiv/d210346
Salceda, R. 2022. Glycine neurotransmission: Its role in development. Frontiers in Neuroscience, 16(September), 1–9. https://doi.org/10.3389/fnins.2022.947563
Soh, J., Raventhiran, S., Lee, J. H., Lim, Z. X., Goh, J., Kennedy, B. K., & Maier, A. B. 2024. The effect of glycine administration on the characteristics of physiological systems in human adults: A systematic review. GeroScience, 46(1), 219–239. https://doi.org/10.1007/s11357-023-00970-8
Sundari, Zuprizal, Yuwanta, T., & Martien, R. 2013. Metabolizable energy of ration added with nanocapsule of turmeric extract on broiler chicken. Journal of the Indonesian Tropical Animal Agriculture, 38(1), 41–46. https://doi.org/10.14710/jitaa.38.1.41-46
Suprayitno, E. 2003. Penyembuhan Luka dengan Ikan Gabus. Brawijaya.
Suprayitno, E. 2014. Profile Albumin fish cork (Ophichepalus striatus) of different ecosystems. International Journal of Current Research and Academic Review, 2(12), 201–208. www.ijcrar.com
Susilowati, R., Januar, H. I., Fithriani, D., & Chasanah, E. 2015. Potensi Ikan Air Tawar Budidaya sebagai Bahan Baku Produk Nutraseutikal Berbasis Serum Albumin Ikan. Jurnal Pascapanen Dan Bioteknologi Kelautan Dan Perikanan, 10(1), 37. https://doi.org/10.15578/jpbkp.v10i1.243
Szekeres, G. P., & Kneipp, J. 2018. Different binding sites of serum albumins in the protein corona of gold nanoparticles. Analyst, 143(24), 6061–6068. https://doi.org/10.1039/c8an01321g
Tapiero, H., Mathé, G., Couvreur, P., & Tew, K. 2002. Arginine. Biomedicine & Pharmacotherapy, 56, 439–445. https://doi.org/10.1016/B978-008055232-3.63670-0
Thangavel, P., Ramachandran, B., Chakraborty, S., Kannan, R., Lonchin, S., & Muthuvijayan, V. 2017. Accelerated Healing of Diabetic Wounds Treated with L-Glutamic acid Loaded Hydrogels Through Enhanced Collagen Deposition and Angiogenesis: An in Vivo Study. Scientific Reports, 7(1), 1–15. https://doi.org/10.1038/s41598-017-10882-1
Tomé, D. 2013. Digestibility issues of vegetable versus animal proteins: Protein and amino acid requirements-functional aspects. Food and Nutrition Bulletin, 34(2), 272–274. https://doi.org/10.1177/156482651303400225
Umeda, K., Shindo, D., Somekawa, S., Nishitani, S., Sato, W., Toyoda, S., Karakawa, S., Kawasaki, M., Mine, T., & Suzuki, K. 2022. Effects of Five Amino Acids (Serine, Alanine, Glutamate, Aspartate, and Tyrosine) on Mental Health in Healthy Office Workers: A Randomized, Double-Blind, Placebo-Controlled Exploratory Trial. Nutrients, 14(11). https://doi.org/10.3390/nu14112357
Wada, Y., Takeda, Y., & Kuwahata, M. 2018. Potential role of amino acid/protein nutrition and exercise in serum albumin redox state. Nutrients, 10(1), 1–11. https://doi.org/10.3390/nu10010017
Walker, M. C., & van der Donk, W. A. 2016. The many roles of glutamate in metabolism. Journal of Industrial Microbiology and Biotechnology, 43(2–3), 419–430. https://doi.org/10.1007/s10295-015-1665-y
Warisan, W., & Yulisman, Y. 2019. Kandungan Lisin dan Pertumbuhan Ikan Gabus (Channa striata) yang Diberi Pakan Berbeda. Seminar Nasional Lahan …, 978–979. http://conference.unsri.ac.id/index._php/lahansuboptimal/article/view/1269
Watford, M., & Wu, G. 2018. Protein. Advances in Nutrition, 9(5), 651–653. https://doi.org/10.1093/ADVANCES/NMY027
Wu, G., Bazer, F. W., Burghardt, R. C., Johnson, G. A., Kim, S. W., Knabe, D. A., Li, P., Li, X., McKnight, J. R., Satterfield, M. C., & Spencer, T. E. 2011. Proline and hydroxyproline metabolism: Implications for animal and human nutrition. Amino Acids, 40(4), 1053–1063. https://doi.org/10.1007/s00726-010-0715-z
Wu, G., Jaeger, L. A., Bazer, F. W., & Rhoads, J. M. 2004. Arginine deficiency in preterm infants: Biochemical mechanisms and nutritional implications. Journal of Nutritional Biochemistry, 15(8), 442–451. https://doi.org/10.1016/j.jnutbio.2003.11.010
Wu, M., Cronin, K., & Crane, J. 2021. Biochemistry, Collagen Synthesis. StatPearls Publishing.
Xiao, C. W., Hendry, A., Kenney, L., & Bertinato, J. 2023. l-Lysine supplementation affects dietary protein quality and growth and serum amino acid concentrations in rats. Scientific Reports, 13(1), 1–12. https://doi.org/10.1038/s41598-023-47321-3
Yamamoto, T., & Inui-Yamamoto, C. 2023. The flavor-enhancing action of glutamate and its mechanism involving the notion of kokumi. Npj Science of Food, 7(1), 1–6. https://doi.org/10.1038/s41538-023-00178-2
Yang, Z., Yang, Y., Yang, J., Wan, X., Yang, H., & Wang, Z. 2020. Hyperhomocysteinemia induced by methionine excess is effectively suppressed by betaine in Geese. Animals, 10(9), 1–12. https://doi.org/10.3390/ani10091642
Zhou, Y., & Danbolt, N. C. 2014. Glutamate as a neurotransmitter in the healthy brain. Journal of Neural Transmission, 121(8), 799–817. https://doi.org/10.1007/s00702-014-1180-8