LC-HRMS profiling, antibacterial activities, and in silico study of ethyl acetate extract from Dracaena angustifolia root bark

##plugins.themes.bootstrap3.article.main##

I WAYAN KARTA
https://orcid.org/0000-0002-7219-9819
WARSITO WARSITO
https://orcid.org/0000-0002-8962-819X
MASRURI MASRURI
https://orcid.org/0000-0002-7956-7055
I WAYAN MUDIANTA
https://orcid.org/0000-0002-0388-3828

Abstract

Abstract. Karta IW, Warsito W, Masruri M, Mudianta IW. 2024. LC-HRMS profiling, antibacterial activities, and in silico study of ethyl acetate extract from Dracaena angustifolia root bark. Biodiversitas 25: 3555-3567. The escalating resistance of bacteria to conventional antibiotics has spurred new sources of exploration of natural antibacterial agents. This study aimed to unveil the antibacterial potential of Dracaena angustifolia Roxb. root bark extract through a comprehensive approach of in vitro assays, LC-HRMS analysis, in silico, and molecular dynamics simulations. The root bark, extracted with ethyl acetate, was identified using LC-HRMS and tested for antibacterial activity using the diffusion method. The extract demonstrated the ability to inhibit the growth of Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Salmonella typhi. Of 37 annotated compounds, four (Arbutin, (-)-Caryophyllene oxide, Ruscoponticoside C, and Striatisporolide A) were predicted by PASS to exhibit antibacterial potential. Molecular docking revealed differences in the binding interactions between amino acid residues and ligands of the target protein (PDB ID: 3HUN). Ruscoponticoside C shares binding site similarities with the native ligand Ampicillioic acid. Molecular dynamics simulations showed that the ligand-protein complexes of Arbutin, Ruscoponticoside C, Striatisporolide A, and Ampicillioic acid were more stable compared to Chloramphenicol. This study suggests that this plant’s root bark extract has potential as an antibacterial agent, inspiring further in-depth research into the isolation of its secondary metabolites and their potential impact on drug discovery.

##plugins.themes.bootstrap3.article.details##

References
Abdallah EM, Alhatlani BY, de Paula Menezes R, Martins CHG. 2023. Back to nature: Medicinal plants as promising sources for antibacterial drugs in the post-antibiotic era. Plants 12 (17): 3077. DOI: 10.3390/plants12173077.
Abdelgawad MA, Hamed AA, Nayl AA, Badawy MSEM, Ghoneim MM, Sayed AM, Hassan HM, Gamaleldin NM. 2022. The chemical profiling, docking study, and antimicrobial and antibiofilmactivities of the endophytic fungi Aspergillus sp. AP5. Molecules 24 (5): 1704. DOI: 10.3390/ molecules27051704.
Aryal B, Adhikari B, Aryal N, Bhattarai BR, Khadayat K, Parajuli N. 2021. LC-HRMS profiling and antidiabetic, antioxidant, and antibacterial activities of Acacia catechu (L.f.) Willd. Biomed Res Intl 2021: 7588711. DOI: 10.1155/2021/7588711.
Aziz M, Ejaz SA, Zargar S, Akhtar N, Aborode AT, Wani TA, Batiha GE, Siddique F, Alqarni M, Akintola AA. 2022. Deep learning and structure-based virtual screening for drug discovery against NEK7: A novel target for the treatment of cancer. Molecules 27 (13): 4098. DOI: 10.3390/molecules27134098.
Babu K, Prabhu DS. 2024. Dracaena trifasciata (Prain) Mabb traditional use, pharmacognosy, phytochemistry, and pharmacology?: A comprehensive review. J Phytopharm 13 (3): 235-241. DOI: 10.31254/phyto.2024.13307.
Bagewadi ZK, Yunus Khan TM, Gangadharappa B, Kamalapurkar A, Mohamed Shamsudeen S, Yaraguppi DA. 2023. Molecular dynamics and simulation analysis against superoxide dismutase (SOD) target of Micrococcus luteus with secondary metabolites from Bacillus licheniformis recognized by genome mining approach. Saudi J Biol Sci 30: 103753. DOI: 10.1016/j.sjbs.2023.103753.
Balouiri M, Sadiki M, Ibnsouda SK. 2016. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal 6 (2): 71-79. DOI: 10.1016/j.jpha.2015.11.005.
Banskota AH, Tezuka Y, Tran QL, Kadota S. 2003. Chemical constituents and biological activities of Vietnamese medicinal plants. Curr Top Med Chem 3: 227-248. DOI: 10.2174/1568026033392516.
Barua I, Sonowal R. 2011. Indigenous herbal medicine among the Sonowal Kachari tribe?: A study in a forest village in Dibrugarh, Assam, India. NeBIO 2 (4): 31-35.
Breijyeh Z, Karaman R. 2023. Design and synthesis of novel antimicrobial agents. Antibiotics 12: 628. DOI: 10.3390/antibiotics12030628.
Campos L, Seixas L, Dias S, Peres AM, Veloso ACA, Henriques M. 2022. effect of extraction method on the bioactive composition, antimicrobial activity, and phytotoxicity of pomegranate by-products. Foods 11 (7): 992. DOI: 10.3390/foods11070992.
Channar PA, Saeed A, Albericio F, Larik FA, Abbas Q, Hassan M, Raza H, Seo SY. 2017. Sulfonamide-Linked ciprofloxacin, sulfadiazine and amantadine derivatives as a novel class of inhibitors of jack bean urease; synthesis, kinetic mechanism and molecular docking. Molecules 22 (8): 1352. DOI: 10.3390/molecules22081352.
Dewatisari WF, To’bungan N. 2024. Review: Phytochemistry and ethnopharmacology of Dracaena trifasciata. Nusantara Bioscience 16: 169-184. DOI: 10.13057/nusbiosci/n160203.
Dutta M, Barooah MS. 2021. Consumption and utilisation of indigenous herbal plants among the Sonowal Kachari Tribes of Assam -A Review. J Xi’an Univ Archit Technol XIII (7): 68-76.
Fadana Y, Dinana IA, Srihardyastutie A, Rollando R, Masruri M. 2023. Screening Indonesian pine (Pinus merkusii Jungh at de Vriese) Compound as an antibacterial agent: In vitro and in silico study. Trop J Nat Prod Res 7 (3): 2586-2595. DOI: 10.26538/tjnpr/v7i3.19.
Fatriansyah JF, Boanerges AG, Kurnianto SR, Pradana AF, Fadilah, Surip SN. 2022. Molecular dynamics simulation of ligands from Anredera cordifolia (Binahong) to the Main Protease (M pro) of SARS-CoV-2. J Trop Med 2022: 1178228. DOI: 10.1155/2022/1178228.
Gaona-López C, Méndez-Álvarez D, Moreno-Rodríguez A, Bautista-Martínez JL, De Fuentes-Vicente JA, Nogueda-Torres B, García-Torres I, López-Velázquez G, Rivera G. 2024. TATA-binding protein-based virtual screening of FDA drugs identified new anti-giardiasis agents. Intl J Mol Sci 25: 6238. DOI: 10.3390/ijms25116238.
Gauba A, Rahman KM. 2023. Evaluation of antibiotic resistance mechanisms in gram-negative bacteria. Antibiotics 12 (11): 1590. DOI: 10.3390/antibiotics12111590.
Gaurav A, Bakht P, Saini M, Pandey S, Pathania R. 2023. Role of bacterial efflux pumps in antibiotic resistance, virulence, and strategies to discover novel efflux pump inhibitors. Microbiology 169: 001333. DOI: 10.1099/mic.0.001333.
Ghahremanian S, Mehdi M, Raeisi K, Toghraie D. 2022. Molecular dynamics simulation approach for discovering potential inhibitors against SARS-CoV-2: A structural review. J Mol Liq 354: 118901. DOI: 10.1016/j.molliq.2022.118901.
Ghai I. 2023. A barrier to entry: examining the bacterial outer membrane and antibiotic resistance. Appl Sci 13: 4238. DOI: 10.3390/app13074238.
Ghalloo BA, Khan KUR, Ahmad S, Aati HY, Al-Qahtani J H, Ali B, Mukhtar I, Hussain M, Shahzad MN, Ahmed I. 2022. Phytochemical profiling, in vitro biological activities, and in silico molecular docking studies of Dracaena reflexa. Molecules 27 (3): 913. DOI: 10.3390/molecules27030913.
Hanh NT, Hop NV, Thai HV, Quy NV, Luong NT. 2021. Traditional knowledge about medicinal plants of Tay Ethnic Community in South Vietnam: A case study at Lan Tranh Protection Forest, Lam Dong Province. Intl J Prog Sci Technol 29 (1): 565-589. DOI: 10.52155/ijpsat.v29.1/3584.
Huang W, Li P, Liu Y, Huang W, Ju Y, Wang J, Ntumwel CB, Long C. 2016. Ethnobotanical study on medicinal plants used by Li people in Ledong, Hainan Island, China. Acta Soc Bot Pol 85 (1): 1-15. DOI: 10.5586/asbp.3485.
Huang W, Wang Y, Tian W, Cui X, Tu P, Li J, Shi S, Liu X. 2022. Biosynthesis investigations of terpenoid, alkaloid, and flavonoid antimicrobial agents derived from medicinal plants. Antibiotics 11 (10): 1380. DOI: 10.3390/antibiotics11101380.
Karta IW, Warsito W, Masruri M, Mudianta, IW. 2024. Effects of solvent polarity on phytoconstituents, antioxidant and anti-inflammatory activities of Dracaena angustifolia Roxb root bark extracts. Trop J Nat Prod Res 8 (5): 7148-7153. DOI: 10.26538/tjnpr/v8i5.15.
Krieger E, Vriend G. 2014. YASARA View-Molecular graphics for all devices - from smartphones to workstations. Bioinformatics 30 (20): 2981-2982. DOI: 10.1093/bioinformatics/btu426.
Kurniawan J, Ishida T. 2022. Protein model quality estimation using molecular dynamics simulation. ACS Omega 7 (28): 24274-24281. DOI: 10.1021/acsomega.2c01475.
Li J, Monje-Galvan V. 2023. In vitro and in silico studies of antimicrobial saponins: A review. Processes 11: 2856. DOI: 10.3390/pr11102856.
Liu A, Garrett S, Hong W, Zhang J. 2024. Staphylococcus aureus infections and human intestinal microbiota. Pathogens 13 (4): 276. DOI: 10.3390/pathogens13040276.
Lobiuc A, Pav?l NE, Mangalagiu II, Gheorghi?? R, Teliban GC, Am?riuc?i-Mantu D, Stoleru V. 2023. Future antimicrobials: Natural and functionalized phenolics. Molecules 28 (3): 1114. DOI: 10.3390/molecules28031114.
Madushanka A, Moura RT, Verma N, Kraka E. 2023. Quantum mechanical assessment of protein-ligand hydrogen bond strength patterns: Insights from semiempirical tight-binding and local vibrational mode theory. Intl J Mol Sci 24 (7): 6311. DOI: 10.3390/ijms24076311.
Masruri M, Wiryawan A, Ikhtiarini N, Nurravida E. 2024. Phytochemistry and antibacterial activity the water extract from Paraserianthes falcataria. Alchemy J Chem 12: 36-41. DOI: 10.18860/al.v12i1.24234.
Mazur M, Mas?owiec D. 2022. Antimicrobial activity of lactones. Antibiotics 11 (10): 1327. DOI: 10.3390/antibiotics11101327.
Mendonça AMS, Monteiro CA, Moraes-Neto RN, Monteiro AS, Mondego-Oliveira R, Nascimento CEC, da Silva LCN, Lima-Neto LG, Carvalho RC, de Sousa EM. 2022. Ethyl acetate fraction of Punica granatum and its Galloyl-HHDP-Glucose compound, alone or in combination with fluconazole, have antifungal and antivirulence properties against Candida sp.. Antibiotics 11 (2): 265. DOI: 10.3390/antibiotics11020265.
Nappi F, Avtaar Singh SS, Jitendra V, Fiore A. 2023. Bridging molecular and clinical sciences to achieve the best treatment of Enterococcus faecalis endocarditis. Microorganisms 11 (10): 2604. DOI: 10.3390/microorganisms11102604.
Nappi F. 2024. Current knowledge of Enterococcal Endocarditis: A disease lurking in plain sight of health providers. Pathogens 13 (3): 235. DOI: 10.3390/pathogens13030235.
Pantsar T, Poso A. 2018. Binding affinity via docking: Fact and fiction. Molecules 23 (8): 1899. DOI: 10.3390/molecules23081899.
P?truic? S, Adeiza SM, Hulea A, Alea E, Cocan I, Moraru D, Imbrea I, Floares D, Pet I, Imbrea F, Obistioiu D. 2024. Romanian bee product analysis: Chemical composition, antimicrobial activity, and molecular docking insights. Foods 13 (10): 1455. DOI: 10.3390/foods13101455.
Pinzi L, Rastelli G. 2019. Molecular docking: Shifting paradigms in drug discovery. Intl J Mol Sci 20 (18): 4331. DOI: 10.3390/ijms20184331.
Purwantiningsih TI, Widyobroto BP, Suranindyah YY, Artama WT. 2023. Antibacterial activity of faloak (Sterculia quadrifida) leaves extract. Biodiversitas 24 (12): 6613-6620. DOI: 10.13057/biodiv/d241223.
Ramata-Stunda A, Petrina Z, Valkovska V, Boroduškis M, Gibnere L, Gurkovska E, Nikolajeva V. 2022. Synergistic effect of polyphenol-rich complex of plant and green propolis extracts with antibiotics against respiratory infections causing bacteria. Antibiotics 11: 160. DOI: 10.3390/antibiotics11020160.
Ramos S, Silva V, de Lurdes Enes Dapkevicius M, Caniça M, Tejedor-Junco MT, Igrejas G, Poeta P. 2020. Escherichia coli as commensal and pathogenic bacteria among food-producing animals: Health implications of extended spectrum ?-lactamase (ESBL) production. Animals 10: 2239. DOI: 10.3390/ani10122239.
Ravikumar Y, Koonyosying P, Srichairatanakool S, Ponpandian LN, Kumaravelu J, Srichairatanakool S. 2023. In silico molecular docking and dynamics simulation analysis of potential histone lysine methyl transferase inhibitors for managing ?-thalassemia. Molecules 28 (21): 7266. DOI: 10.3390/molecules28217266.
Rollando R, Monica E, Afthoni MH, Warsito W, Masruri M, Widodo N, Zainul R. 2023. In-vitro and In-silico Studies of a phenylpropanoid compound isolated from Sterculia quadrifida Seeds and its inhibitory effect on matrix metalloproteinase-9. Trop J Nat Prod Res 7 (7): 3490-3495. DOI: 10.26538/tjnpr/v7i7.30.
Rustini R, Aisy DR, Putra PP, Andayani R, Dwinatrana K. 2023. Antibacterial activity of endophytic bacterial extracts isolated from Pineapple Peel (Ananas comosus L.). Trop J Nat Prod Res 7 (7): 3320-3324. DOI: 10.26538/tjnpr/v7i7.8.
Sakong P, Khampitak T, Cha U, Pinitsoontorn C, Sriboonlue P, Yongvanit P, Boonsiri P. 2011. Antioxidant activity and bioactive phytochemical contents of traditional medicinal plants in northeast Thailand. J Med Plants Res 5 (31): 6822-6831. DOI: 10.5897/JMPR11.1222.
Salamat A, Kosar N, Mohyuddin A, Imran M, Zahid MN, Mahmood T. 2024. SAR, molecular docking and molecular dynamic simulation of natural inhibitors against SARS-CoV-2 Mpro Spike Protein. Molecules 29 (5): 1144. DOI: 10.3390/molecules29051144.
Sasse M, Rainer M. 2022. Mass spectrometric methods for non-targeted screening of metabolites: A future perspective for the identification of unknown compounds in plant extracts. Separations 9 (12): 415. DOI: 10.3390/separations9120415.
Sibero MT, Pribadi R, Ambariyanto A, Haryanti D, Kharisma VD, Dewi AS, Patantis G, Zilda DS, Murwani R. 2022. Ethnomedicinal bioprospecting of Rhizophora apiculata leaves through in silico and in vitro approaches as antioxidant, ?-glucosidase inhibitor and anticancer. Biodiversitas 23: 6437-6447. DOI: 10.13057/biodiv/d231242.
Singh AV, Rosenkranz D, Ansari MHD, Singh R, Kanase A, Singh SP, Johnston B, Tentschert J, Laux P, Luch A. 2020. Artificial intelligence and machine learning empower advanced biomedical material design to toxicity prediction. Adv Intell Syst 2 (12): 1-19. DOI: 10.1002/aisy.202000084.
Surayya L, Putri EKA, Malik C. 2016. Ethnobotanical study of herbal medicine in Ranggawulung Urban Forest, Subang District, West Java, Indonesia. Biodiversitas 17: 172-176. DOI: 10.13057/biodiv/d170125.
Thu ZM, Myo KK, Aung HT, Armijos C, Vidari G. 2020. Flavonoids and stilbenoids of the genera Dracaena and Sansevieria?: structures and bioactivities. Molecules 25: 2608. DOI: 10.3390/molecules25112608.
Thu ZM, Oo SM, Nwe T M, Aung HT, Armijos C, Hussain FHS, Vidari G. 2021. Structures and bioactivities of steroidal saponins isolated from the genera Dracaena and Sansevieria. Molecules 26 (7):1916. DOI: 10.3390/molecules26071916.
Vaou N, Stavropoulou E, Voidarou C, Tsigalou C, Bezirtzoglou E. 2021. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms 9 (10): 2041. DOI:10.3390/microorganisms9102041.
Villanueva ELC, Buot IE. 2020. Useful plants of the Alangan Mangyan of Halcon Range, Mindoro Island, Philippines. J Mar Isl Cult 9 (1): 76-102. DOI: 10.21463/jmic.2020.09.1.05.
Widyananda MH, Wicaksono ST, Rahmawati K, Puspitarini S, Ulfa SM, Jatmiko YD, Masruri M, Widodo N. 2022. A potential anticancer mechanism of finger root (Boesenbergia rotunda) extracts against a breast cancer cell line. Scientifica 2022: 9130252. DOI: 10.1155/2022/9130252
Yan Y, Li X, Zhang C, Lv L, Gao B, Li M. 2021. Research progress on antibacterial activities and mechanisms of natural alkaloids: A review. Antibiotics 10 (3): 318. DOI: 10.3390/antibiotics 10030318.
Yan Y, Xia X, Fatima A, Zhang L, Yuan G, Lian F, Wang Y. 2024. Antibacterial activity and mechanisms of plant flavonoids against gram-negative bacteria based on the antibacterial statistical model. Pharmaceuticals 17 (3): 292. DOI: 10.3390/ph17030292.
Yang C, Chen EA, Zhang Y. 2022. Protein-Ligand docking in the machine-learning era. Molecules 27 (14): 4568. DOI: 10.3390/molecules27144568.
Yi J, Zhao T, Zhang Y, Tan Y, Han X, Tang Y, Chen G. 2022. Isolated compounds from Dracaena angustifolia Roxb and acarbose synergistically / additively inhibit ? ? glucosidase and ? ? amylase: An in vitro study. BMC Complement Med Ther 22: 177. DOI: 10.1186/s12906-022-03649-3.
Zha L, Garrett S, Sun J. 2019. Salmonella infection in chronic inflammation and gastrointestinal cancer. Diseases 7: 28). DOI: 10.3390/diseases7010028.
Zhang F, Cheng W. 2022. The mechanism of bacterial resistance and potential bacteriostatic strategies. Antibiotics 11 (9): 1215. DOI: 10.3390/antibiotics11091215.

Most read articles by the same author(s)