Exploring the diversity of cellulolytic microorganisms from tea factory waste and evaluating their potential in breaking down tea waste

##plugins.themes.bootstrap3.article.main##

MARIANI SEMBIRING
MUKHLIS
RAZALI
BENNY HIDAYAT

Abstract

Abstract. Sembiring M, Mukhlis, Razali, Hidayat B. 2025. Exploring the diversity of cellulolytic microorganisms from tea factory waste and evaluating their potential in breaking down tea waste. Biodiversitas 26: 377-385. The rate at which organic materials decompose is influenced by their cellulose, lignin, and hemicellulose content. To accelerate the decomposition process, cellulolytic microorganisms can be employed, which can be isolated from organic materials. Tea plants, as a significant plantation commodity, produce various types of waste during processing, including solid, liquid, and gas wastes. Solid waste from tea factories is produced in large quantities year-round and has substantial potential as a source of organic material. This research aimed to find cellulolytic microbes that were sourced from tea waste and have superior potential in the decomposition of organic matter, especially tea waste. The research involved several stages: isolating microbes from semi-processed waste from the Bah Butong tea factory, purifying the microbes to obtain pure isolates, testing the semi-qualitative potency of these isolates on CMC (Carboxyl methyl cellulase) media, and assessing the degradation potential of the superior isolates on raw tea factory waste. The research findings revealed the presence of five bacteria and two fungi from tea factory waste that have potential as decomposer microbes: Enterobacter oligotrophicus (AS), Stenotrophomonas maltophilia H05 (BS), S. maltophilia (CS), Priestia megaterium (DS), Methylophilus methylotrophus (ES) and cellulolytic fungi Aspergillus fumigatus (J1) and Aspergillus corrugatus (J2). Overall, the use of these cellulolytic bacteria and fungi can accelerate the decomposition of tea factory waste, with compost nitrogen content increasing by 102%. The application of Aspergillus corrugatus (J2) and Methylophilus methylotrophus (ES) is the best treatment with the lowest C/N ratios and the highest total nitrogen content.

##plugins.themes.bootstrap3.article.details##

References
Aboagye G, Tuah B, Bansah E, Tettey C, Hunkpe G. 2021. Comparative evaluation of antioxidant properties of lemongrass and other tea brands. Sci Afr 11: e00718 11. DOI: 10.1016/j.sciaf.2021.e00718.
Abu-Gharbia MA, El-Sawy NM, Nasr AM, Zedan LA. 2018. Isolation, optimization and characterization of cellulases and hemicellulases from Bacillus cereus LAZ 518 isolated from cow dung using corn cobs as lignocellulosic waste. J Pharm Appl Chem 4 (2): 1-13.
Ashwani K, Saida L, Venkateswar K. 2014. Isolation, screening and characterization of cellulolytic bacteria from forest soil sample. Intl J Curr Microbiol Appl Sci 3 (10): 679-685.
Awasthi MK, Duan Y, Liu T, Awasthi SK, Zhang Z. 2020. Relevance of biochar to influence the bacterial succession during pig manure composting. Biores Technol 304: 122962. DOI: 10.1016/j.biortech.2020.122962.
Awasthi MK, Wang Q, Huang H, Ren X, Lahori AH, Mahar A, Ali A, Shen F, Li R, Zhang Z. 2016. Influence of zeolite and lime as additives on greenhouse gas emissions and maturity evolution during sewage sludge composting. Bioresour Technol 216: 172-181. DOI: 10.1016/j.biortech.2016.05.065.
Aziz AHA, Ibrahim AM, Guirgis AA, Dawwam GE, Elsababty ZE. 2021. Isolation and screening of cellulase producing bacteria isolated from soil. Benha J Appl Sci 6: 207-213. DOI: 10.21608/bjas.2021.188849.
Behera BC, Parida S, Dutta SK, Thatoi HN. 2014. Isolation and identification of cellulose degrading bacteria from mangrove soil Mahanadi River delta and their cellulose production ability. Am J Microbiol Res 2 (1): 41-46. DOI: 10.12691/ajmr-2-1-6.
Boondaeng A, Keabpimai J, Trakunjae C, Vaithanomsat P, Srichola P, Niyomvong N. 2024. Cellulase production under solid-state fermentation by Aspergillus sp. IN5: Parameter optimization and application. Heliyon 10: e26601. DOI: 10.1016/j.heliyon.2024.e26601.
Choi YW, Hodgkiss IJ, Hyde KD. 2005. Enzyme production by endophytes of Brucea javanica. J Agric Technol 1: 55-66.
Custer GF, Bresciani L, Andreote DF. 2022. Ecological and evolutionary implications of microbial dispersal. Front Microbiol 13: 855859. DOI: 10.3389/fmicb.2022.855859.
Dewi Y, Robin R, Prasetiyono E, Kurniawan A. 2020. Cellulolytic activity and pathogenicity of Bacillus cereus_TSS4 from leaf litter of mangrove. DEPIK Jurnal Ilmu-Ilmu Perairan, Pesisir dan Perikanan 9 (1): 8-17. DOI: 10.13170/depik.9.1.12748. [Indonesian]
Ferreira V, Canhoto C. 2015. Future increase in temperature might stimulate litter decomposition in temperate cold water streams - evidence from a stream manipulation experiment. Freshw Biol 60 (5): 881-892. DOI: 10.1111/fwb.12539.
Ferreira V, Elosegi A, Tiegs SD, Schiller DV, Young R. 2020. Organic matter decomposition and ecosystem metabolism as tools to assess the functional integrity of streams and rivers. Water 12 (12): 3523. DOI: 10.3390/w12123523.
Ferbiyanto A, Rusmana I, Raffiudin R. 2015. Characterization and Identification of cellulolytic bacteria from gut of worker Macrotermes gilvus. HAYATI J Biosci 22: 197-200. DOI: 10.1016/j.hjb.2015.07.001.
Frainer A, Moretti MS, Xu W, Gessner MO. 2015. No evidence for leaf-trait dissimilarity effects on litter decomposition, fungal decomposers, and nutrient dynamics. Ecology 96 (2): 550-561. DOI: 10.1890/14-1151.1.
Gao G, He Z, Pan S, Xuan W, Xu YP. 2020. Effects of climate change on peak runoff and flood levels in Qu River Basin, East China. J Hydro-Environ Res 28: 34-47. DOI: 10.1016/j.jher.2018.02.005
Guo Y, Zhang Y, Zheng D, Li M, Yue Y. 2020. Isolation and characterization of nanocellulose crystals via acid hydrolysis from agricultural waste-tea stalk. Intl J Biol Macromol 163: 927-933. DOI: 10.1016/j.ijbiomac.2020.07.009.
Hidayah M, Hazmi M. 2017. Isollation and cellulase enzyme test on cellulolytic bacteria from soil waste. Agritrop 15 (2): 293-308.
Hidayati YA, Yusra MR, Puteri GCK, Arlina ETM, Badruzzaman DZ, Harlia E. 2023. Macroscopic and microscopic isolation and identification of cellulolytic bacteria from mixtures of coal and beef cattle. Proceedings of the 3rd International Conference on Environmentally Sustainable Animal Industry 2022. DOI: 10.2991/978-94-6463-116-6_41.
Ilahi, RK, Febria FA, 2021. Screening of cellulolytic bacteria from biological education and research forest floor Andalas University, Indonesia. Pak J Biol Sci 24: 612-617. DOI: 10.3923/pjbs.2021.612.617.
Iqbal MK, Nadeem A, Sherazi F, Khan RA. 2015. Optimization of process parameters for kitchen waste composting by response surface methodology. Intl J Environ Sci Technol 12: 1759-1768. DOI: 10.1007/s13762-014-0543-x.
Islam F, Roy N. 2019. Isolation and characterization of cellulase-producing bacteria from sugar industry waste. Am J Biosci 7 (1): 16.
Khatoon H, Solanki P, Narayan M, Tewari L, Rai JPN. 2017. Role of microbes in organic carbon decomposition and maintenance of soil ecosystem. Intl J Chem Stud 5 (6): 1648-1656. DOI: 10.20546/ijcmas.2017.605.296.
Lane DJ. 1991. 16S/23S rRNA Sequencing. In: Stackebrandt E, Goodfellow M (eds). Nucleic Acid Techniques in Bacterial Systematic. John Wiley and Sons, New York.
Lee Y. 2016. Various microorganisms’ roles in composting: A review. APEC Youth Sci J 8 (1): 11-15.
Liaud N, Giniés C, Navarro D. 2014. Exploring fungal biodiversity: Organic acid production by 66 strains of filamentous fungi. Fungal Biol Biotechnol 1 (1): 1-10. DOI: 10.1186/s40694-014-0001-z.
Lin X, Chen Z, Zhang Y, Luo W, Tang H, Deng B, Deng J, Li B. 2015. Comparative characterisation of green tea and black tea cream: Physicochemical and phytochemical nature. Food Chem 173: 432-440. DOI: 10.1016/j.foodchem.2014.10.048
Liu L, Huang WC, Liu Y, Li M. 2021. Diversity of cellulolytic microorganisms and microbial cellulases. Intl Biodeter Biodegrad 163: 105277. DOI: 10.1016/j.ibiod.2021.105277.
Mahmood R, Afrin N, Jolly SN, Shilpi RY. 2020. Isolation, screening and identification of cellulose degrading bacteria from different types of samples. World J Environ Biosci 9: 8-13. DOI: 10.21786/bbrc/13.2/50.
Manter DK, Vivanco JM. 2007. Use of the ITS primers, ITS1F and ITS4, to characterize fungal abundance and diversity in mixed-template samples by qPCR and length heterogeneity analysis. J Microbiol Method 71 (1): 7-14. DOI: 10.1016/j.mimet.2007.06.016.
Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG. 1998. Design and Evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64 (2): 795-799. DOI: 10.1128/AEM.64.2.795-799.1998.
Nkohla A, Okaiyeto K, Nwodo UU, Mabinya LV, Okoh AI. 2017. Endoglucanase and xylanase production by Chryseobacterium species isolated from decaying biomass. Pol J Environ Stud 26 (6): 2651-2660. DOI: 10.15244/pjoes/68958.
Nutongkaew T, Duangsuwan W, Prasertsan S, Prasertsan P. 2014. Effect of inoculum size on production of compost and enzymes from palm oil mill biogas sludge mixed with shredded palm empty fruit bunches and decanter cake. Songklanakarin J Sci Technol 36 (3): 275-281.
Pereira NS, Soares I, Miranda FR. 2016. Decomposition and nutrient release of leguminous green manure species in the Jaguaribe Apodi region, Ceará, Brazil. Ciência Rural, Santa Maria 46 (6): 970-975. DOI: 10.1590/0103-8478cr20140468.
Priya V, Lokesh M, Kesavan D, Komathi G, Naveena S. 2017. Evaluating the perfect carbon: Nitrogen (C: N) ratio for decomposing compost. Intl J Eng Technol 4 (9): 1144-1148.
Prabhu L, Krishnaraj V, Sathish S, Gokulkumar S, Karthi N, Rajeshkumar L, Balaji D, Vigneshkumar N, Elango KS, Karpagam J, Vijayalakshmi VJ, Gowarthan ER, Jayakumar H. 2021. Experimental investigation on mechanical properties of flax/banana/industrial waste tea leaf fiber reinforced hybrid polymer composites. Materialstoday 45 (9): 8136-8143. DOI: 10.1016/j.matpr.2021.02.111.
Puspawati NMI, Atmaja IWD, Sutari NW. 2018. Exploration of cellulolytic bacteria from organic waste in Denpasar. E-Jurnal Agroekoteknol Tropika 7 (3): 363-373.
Real AR, Muñoz I, Cánovas CG, Granados V, Laseras PL, Menéndez M. 2020. Subsurface zones in intermittent streams are hotspots of microbial decomposition during the non-flow period. Sci Tot Environ 703: 135485. DOI: 10.1016/j.scitotenv.2019.135485.
Ren Z, Chen Z, Zhang Y, Zhao T, Ye X, Gao X, Lin X, Li B. 2019. Functional properties and structural profiles of water-insoluble proteins from three types of tea residues. LWT: Food Sci Technol 110: 324-331. DOI: 10.1016/j.lwt.2019.04.101.
Sánchez ÓJ, Ospina DA, Montoya S. 2017. Compost supplementation with nutrients and microorganisms in composting process. Waste Manag 69: 136-153. DOI: 10.1016/j.wasman.2017.08.012.
Sembiring M, Pakpahan GM, Muklis, Razali, Hidayat B. 2024. Isolation and potential testing of cellulolytic fungi from tea processing waste. IOP Conf Ser: Earth Environ Sci 1302: 012036. DOI: 10.1088/1755-1315/1302/1/012036.
Sembiring M, Sabrina T. 2022a. Diversity of phosphate solubilizing bacteria and fungi from andisol soil affected by the eruption of Mount Sinabung (North Sumatra: Indonesia) Biodiversitas 23 (2): 714-720. DOI: 10.13057/biodiv/d230216.
Sembiring M, Sabrina T. 2022b. Nitrogen fertilization and corn growth (Zea mays) effect in andisols by using non-symbiotic nitrogen-fixing bacteria. Asian Network for Scientific Information, Faisalabad. DOI: 10.3923/ajps.2022.229.235.
Shang A, Li J, Zhou D, Gan R, Li H. 2021. Molecular mechanisms underlying health benefits of tea compounds. Free Rad Biol Med 172: 181-200. DOI: 10.1016/j.freeradbiomed.2021.06.006.
Shaikh NM, Patel AA, Mehta SA, Patel ND. 2013. Isolation and screening of cellulolytic bacteria inhabiting different environment and optimization of cellulase production. Universal J Environ Res Technol 3: 39-49.
Singh S, Nain L. 2014. Microorganisms in the conversion of agricultural wastes to compost. Proc Indian Nat Sci Acad 80 (2): 473-481. DOI: 10.16943/ptinsa/2014/v80i2/4.
Sökmen M, Demir E, Alomar SY. 2018. Optimization of sequential supercritical fluid extraction (SFE) of caffeine and catechins from green tea. J Supercrit Fluid 133: 171-176. DOI: 10.1016/j.supflu.2017.09.027.
Trivana L, Pradhana AY. 2017. Time optimization of the composting and quality of organic fertilizer based on goat manure and coconut coir dust using PROMI and orgadec bio-activator. Jurnal Sains Veteriner 35 (1): 136-144. DOI: 10.22146/jsv.29301.
Tylianakis JM, Morris RJ. 2017. Ecological networks across environmental gradients Annu Rev Ecol Evol Syst 48: 25-48. DOI: 10.1146/annurev-ecolsys-110316-022821.
Ullah A, Heng S, Munis MFH, Fahad S, Yang X. 2015. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review. Environ. Exp Bot 117: 28-40. DOI: 10.1016/j.envexpbot.2015.05.001.
Wang N, Wang J, Li Y, Li L, Xie X. 2020. Reverse microemulsion prepared by AOT/CTAB/SDS/Tween80 for extraction of tea residues protein. J Mol Liquid 320: 114474. DOI: 10.1016/j.molliq.2020.114474.
Wei Y, Wu D, Wei D, Zhao Y, Wu J, Xie X, Zhang R, Wei Z. 2019. Improved lignocellulose-degrading performance during straw composting from diverse sources with actinomycetes inoculation by regulating the key enzyme activities. Bioresour Technol 271: 66-74. DOI: 10.1016/j.biortech.2018.09.081.
Wu H, Gao T, Andreote FD, Xiao N, Zhang L, Kimirei IA, Wang J. 2024. Biotic and abiotic factors interplay in structuring the dynamics of microbial co-occurrence patterns in tropical mountainsides. Environ Res 250: 118517. DOI: 10.1016/j.envres.2024.118517.
Xu A, Lai W, Chen P, Awasthi MA, Chen X, Wang Y, Xu P. 2021a. A comprehensive review on polysaccharide conjugates derived from tea leaves: Composition, structure, function and application. Trend Food Sci Technol 114: 83-99. DOI: 10.1016/j.tifs.2021.05.020.
Xu Q, Yang Y, Hu K, Chen J, Djomo SN, Yang X, Knudsen TM. 2021b. Economic, environmental, and emergy analysis of China's green tea production. Sustain Prod Consumpt 28: 269-280. DOI: 10.1016/j.spc.2021.04.019.
Zandt D, Fritz C, Wichern F. 2018. In the land of plenty: Catch crops trigger nitrogen uptake by soil microorganisms Plant Soil 423: 549-562. DOI: 10.1007/s11104-017-3540-2.
Zhao T, Chen Z, Lin X, Ren Z, Li B, Zhang Y. 2018. Preparation and characterization of microcrystalline cellulose (MCC) from tea waste. Carbohydrate Polymers 184: 164-170.
Zhang H, Qi R, Mine Y. 2019. The impact of oolong and black tea polyphenols on human health. Food Biosci 29: 55-61. DOI: 10.1016/j.fbio.2019.03.009.
Zhang S, Shan D, Liu X, Sun M. 2018. Cellulose-degrading strains: Their screening and application to corn straw in low-temperature environments. Pol J Environ Stud 27 (5): 2349-2355. DOI: 10.15244/pjoes/79272.
Zhang Z, Liu J-L, Lan J-Y, Duan C-J, Ma Q-S, Feng J-X. 2014. Predominance of Trichoderma and Penicillium in cellulolytic aerobic filamentous fungi from subtropical and tropical forests in China, and their use in finding highly efficient ?-glucosidase. Biotechnol Biofuels 7: 107. DOI: 10.1186/1754-6834-7-107.