Non-synonymous Single Nucleotide Polymorphisms (SNPs) on Growth Differentiation Factor 9 as candidate gene for reproduction in Indonesian local cattle

##plugins.themes.bootstrap3.article.main##

IRMA
SITI DARODJAH RASAD
NENA HILMIA
CECE SUMANTRI

Abstract

Abstract. Irma, Rasad SD, Hilmia N, Sumantri C. 2024. Non-synonymous Single Nucleotide Polymorphisms (SNPs) on Growth Differentiation Factor 9 as candidate gene for reproduction in Indonesian local cattle. Biodiversitas 25: 4011-4019. Reproduction is a biological process that plays an essential role in livestock production. In mammals, the tendency to spontaneously conceive and maintain an embryo is a complex biological process affected by environmental and genetic factors, such as Growth Differentiation Factor 9 (GDF9). Therefore, this study aims to analyze the diversity of the GDF9 gene in the three breeds of cattle (Bos taurus), namely Peranakan Ongole (PO), Belgian Blue (BB), and its crossbreed (BB×PO) by molecular sequencing. A total of 20 blood samples were taken from cattle in the Livestock Embryo Centre, Bogor, Indonesia. DNA was extracted with genomic kit protocol followed by Polymerase Chain Reaction (PCR). Single nucleotide polymorphisms (SNPs) were then analyzed using Sanger sequencing. Sequence analysis was performed using Bio-Edit, Finch TV, and Molecular Evolutionary Genetic Analysis (MEGA) software. Variables analyses were allele and genotype frequency. The results showed that there were five non-synonymous mutations, namely c.589T>G (rs525937888), c.659T>G, c.974C>G, c.1105T>A, and c.1358G>A. These missense mutations altered the amino acid of GDF9 protein at position p.197Phe>Val, p.220Leu>Arg, p.325Ser>Cis, p.369Trp>Arg, and p.453Arg>His, respectively. The results also showed that the mutation prevalence wasigher in Peranakan Ongole compared to Belgian Blue and its crossbreed. 

##plugins.themes.bootstrap3.article.details##

References
Ahlawat S, Sharma R, Roy M, Tantia MS, Prakash V. 2015. Association analysis of novel SNPs in BMPR1B, BMP15 and GDF9 genes with reproductive traits in Black Bengal goats. Small Rumin Res 132: 92-98. DOI: 10.1016/j.smallrumres.2015.10.010.
Ajafar MH, Kadhim AH, Al-Thuwaini TM, Al-Shuhaib MBS, Hussein TH. 2022. Association of bone morphogenetic protein 15 and growth differentiation factor 9 with litter size in livestock: A review study. Acta Sci Anim Sci 45: 1-8. DOI: 10.4025/actascianimsci.v45i1.57927.
Akin N, Richani D, Liao X, Zhao Y, Herta AC, Billooye K, Stocker WA, Mottershead DG, Harrison CA, Smitz J, Anckaert E, Gilchrist RB. 2022. Effect of cumulin and super-GDF9 in standard and biphasic mouse IVM. J Assist Reprod Genet 39 (1): 127-140. DOI: 10.1007/s10815-021-02382-z.
Al Hussini A. 2016. The molecular forms of GDF9 in a range of mammalian species [Thesis]. Victoria University of Wellington, Wellington [New Zealand]. DOI: 10.26686/wgtn.17019398.v1.
Batubara A, Noor RR, Farajallah A, Tiesnamurti B. 2014. Identification of gdf9 gene and its relationship with the prolific traits on indonesian local goats. Proceedings of the 16th AAAP Animal Science Congress, Universitas Gadjah Mada, Yogyakarta, 10-14 November 2014. [Indonesian]
Belli M, Shimasaki S. 2018. Molecular aspects and clinical relevance of GDF9 and bmp15 in ovarian function. Vitam Horm 107: 317-348. DOI: 10.1016/bs.vh.2017.12.003.
Chen PR, Uh K, Monarch K, Spate LD, Reese ED, Prather RS, Lee K. 2023a. Inactivation of growth differentiation factor 9 blocks folliculogenesis in pigs. Biol Reprod 108 (4): 611-618. DOI: 10.1093/biolre/ioad005.
Chen W, Zhai Y, Zhu B, Wu K, Fan Y, Zhou X, Liu L, Ge W. 2022. Loss of growth differentiation factor 9 causes an arrest of early folliculogenesis in zebrafish-A novel insight into its action mechanism. PLoS Genet 18 (12): e1010318. DOI: 10.1371/journal.pgen.1010318.
Chen Y, Shan X, Jiang H, Sun L, Guo Z. 2023b. Regulation of litter size in sheep (Ovis aries) by the GDF9 and BMP15 genes. Ann Agric Sci 68 (2): 148-158. DOI: 10.1016/j.aoas.2023.12.004.
Christoforou ER, Pitman JL. 2019. Intrafollicular growth differentiation factor 9: Bone morphogenetic 15 ratio determines litter size in mammals. Biol Reprod 100: 1333-1343. DOI: 10.1093/biolre/ioz011.
Duan Y, Cai B, Guo J, Wang C, Mai Q, Xu Y, Zeng Y, Shi Y, Wang B, Ding C, Chen M, Zhou C, Xu Y. 2024. GDF9His209GlnfsTer6/ S428T and GDF9Q321X/S428T bi-allelic variants caused female subfertility with defective follicle enlargement. Cell Commun Signal 22: 253. DOI: 1186/s12964-024-01616-8.
Eckery DC, Miller LA, Killian GJ, DeNicola AJ. 2014. Effects of vaccination against GDF9 and bmp15 on fertility and ovarian function in the white-tailed deer. Proceeding of the 26th Vertebrate Pest Conference. Univ of California, Davis. DOI: 0.5070/V426110697.
El Fiky ZA, Hassan GM, Nassar MI. 2017. Genetic polymorphism of growth differentiation factor 9 (GDF9) gene related to fecundity in two Egyptian sheep breeds. J Assist Reprod Genet 34 (12): 1683-1690. DOI: 10.1007/s10815-017-1007-2.
Hartatik T, Chairunissa FAZ, Bintara S, Fadillah FJ, Ningru NP, Puspitasari D, Kustantinah, K. 2023. Mutation analysis and restriction site mapping of GDF9 in Indonesian Bligon goat. Trop Anim Sci J 46 (2): 163-171. DOI: 10.5398/tasj.2023.46.2.163.
Ibrahim AHM. 2021. Genetic variants of the BMP2 and GDF9 genes and their associations with reproductive performance traits in Barki ewes. Small Rumin Res 195: 106302. DOI: 1016/j.smallrumres.2020.106302.
Inayah A, Rahayu S, Widodo N, Prasdini WA. 2016. A new nucleotide variant, G1358A, potentially changes the growth differentiation factor 9 profile that may affect the reproduction performance of Friesian Holstein cattle. Asian Pacific J Reprod 5: 140-143. DOI: 10.1016/j.apjr.2016.01.010.
Jaton C, Koeck A, Sargolzaei M, Price CA, Baes C, Schenkel FS, Miglior F. 2016. Short communication: Genetic correlations between number of embryos produced using in vivo and in vitro techniques in heifer and cow donors. J Dairy Sci 99: 8222-8226. DOI:10.3168/jds.2016-11356.
Kaivo-Oja N. 2007. Growth differentiation factor 9 signaling in the ovary. [Dissertation]. University of Helsinky, Helsinky.
Kirkpatrick BW, Morris CA. 2015. A Major gene for bovine ovulation rate. PLos One 10: e0129025. DOI: 10.1371/journal.pone.0129025.
Li J, Luo W, Huang T, Gong Y. 2019. Growth differentiation factor 9 promotes follicle-stimulating hormone-induced progesterone production in chicken follicular granulosa cells. Gen Comp Endocrinol 276: 69-76. DOI: 10.1016/j.ygcen.2019.03.005.
Lin Z, Li Y, Xu Y, Wang Q, Namgoong S, Cui X, Kim N. 2013. Effects of growth differentiation factor 9 and bone morphogenetic protein 15 on the in vitro maturation of porcine oocytes. Reprod. Domest Anim 49 (2): 219-227. DOI: 1111/rda.12254.
Marchitelli C, Nardone A. 2015. Mutation and sequence variant in GDF9, BMP15, and BMPR1B genes in Maremmana cattle breed with single and twin births. Rend Fis Acc Lincei 26 (3): 533-560. DOI: 10.1007/s12210-015.0418-1.
Monestier O, Servin B, Auclair S, Bourquard T, Poupon A, Pascal G, Fabre S. 2014. Evolutionary origin of bone morphogenetic protein 15 and growth and differentiation factor 9 and differential selective pressure between mono- and polyovulating species. Biol Reprod 91 (4): 83-83. DOI: 10.1095/biolreprod.114.119735.
Nei M, Kumar S. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, Oxford. DOI: 10.1093/oso/9780195135848.001.0001.
Qin N, Liu Q, Zhang YY, Fan XC, Xu XX, Lv ZC, Wei ML, Jing Y, Mu F, Xu RF. 2015. Association of novel polymorphisms of forkhead box L2 and growth differentiation factor-9 genes with egg production traits in local Chinese Dagu hens. Poult Sci 94: 88-95. DOI: 10.3382/ps/peu023.
Rasheed ST, Younis LS, Aboud QM. 2021. Association between bovine gdf9 SNPs and calving rate (superovulation) in holstein friesians cows. Razi Vaccine Serume Res 76 (4): 1035-1045. DOI: 10.22092/ari.2021.354310.1632.
Santos-Biase WKF, Biase FHF, Buratini J, Balieiro J, Watanabe YF, Accorsi MF, Ferreira CR, Stranieri P, Caetano AR, Meirelles FV. 2012. Single nucleotide polymorphisms in the bovine genome are associated with the number of oocytes collected during ovum pickup. Anim Reprod Sci 134: 141-149. DOI: 10.1016/j.anireprosci.2012.08.017.
Singh U, Deb R, Alyethodi RR, Alex R, Kumar S, Chakraborty S, Dhama K, Sharma A. 2014. Molecular markers and their applications in cattle genetic research: A review. Biomark Genom Med 6 (2): 49-58. DOI: 1016/j. bgm.2014.03.001.
Song T, Liu Y, Cuomu R, Tan Y, A Wang C, De J, Cao X, Zeng X. 2023. Polymorphysms analysis of BMP15, GDF9, and BMPR1B in tibetan cashmere goat (Capra hircus). Genes 14: 1102. DOI: 10.3390/genes14051102.
Stankiewicz T, B?aszczyk B. 2016. Relationship between the concentration of bone morphogenetic protein-15 (BMP-15) and growth differentiation factor-9 (GDF-9) in pre-ovulatory follicles, ovarian cysts and serum in sows. Anim Prod Sci 56 (1): 24-32 DOI: 10.1071/an14007.
Stefaniuk-Szmukier M, Ropka-Molik K, Zagrajczuk A, Piórkowska K, Szmato?a T, ?uszczy?ski J, Bugno-Poniewierska M. 2018. Genetic variability in equine GDF9 and BMP15 genes in Arabian and Thoroughbred mares. Ann Anim Sci 18 (1): 39-52. DOI: 1515/aoas-2017-0035.
Sun C, Xie S, Huang T, Zhang W, Wang A, Wang D, Li M, Sun G. 2017. Molecular characterization and expression of the GDF9 gene in New Zealand white rabbits. J Genet 96 (2): 313-318. DOI: 10.1007/s12041-017-0766-y.
Swinerd GW, Alhussini AA, Sczelecki S, Heath D, Mueller TD, McNatty KP, Pitman JL. 2023. Molecular forms of BMP15 and GDF9 in mammalian species that differ in litter size. Sci Rep 13: 22428. DOI: 1038/s41598-023-49852-1.
Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 38 (7): 3022-3027. DOI: 1093/molbev/msab120.
Tang KQ, Yang WC, Li SJ, Yang LG. 2013. Polymorphisms of the bovine growth differentiation factor 9 gene associated with superovulation performance in Chinese Holstein cows. Genet Mol Res 12 (1): 390-399. DOI: 10.4238/2013.February.8.3.
Turathum B, Gao EM, Chian RC. 2021. Review: The function of cumulus cells in oocyte growth and maturation and in subsequent ovulation and fertilization. Cells 10: 2292. DOI: 10.3390/cells10092292.
Wang X, Yang Q, Zhang S, Zhang X, Pan C, Chen H, Zhu H, Lan X. 2019. Genetic effects of single nucleotide polymorphisms in the goat gdf9 gene on prolificacy: True or false positive?. Animals 9 (11): 886. DOI: 10.3390/ani9110886.
Yates AD, Achuthan P, Akanni W, et al. 2020. Ensembl. 2020. Nucleic Acids Res 48 (D1): D682-D688. DOI: 10.1093/nar/gkz966.
Zhang Y, Hongli Du, Jing Chen, Guanfu Yang, Xiquan Zhang. 2008. Porcine growth differentiation factor 9 gene polymorphisms and their associations with litter size. J Genet Genom 35: 163-169. DOI: 10.1016/S1673-8527(08)60022-3.
Zheng P, Dean J. 2007. Oocyte-specific genes affect folliculogenesis, fertilization, and early development. Semin Reprod Med 25 (4): 243-251. DOI: 10.1055/s-2007-980218.

Most read articles by the same author(s)