Characteristics of six cherry tomato genotypes as genetic material for plant breeding programs

##plugins.themes.bootstrap3.article.main##

ANUNG WAHYUDI
NURMAN ABDUL HAKIM
MICHO SANDEKA RACHMAN

Abstract

Abstract. Wahyudi A, Hakim NA, Rachman MS. 2024. Characteristics of six cherry tomato genotypes as genetic material for plant breeding programs. Biodiversitas 25: 3850-3859. The morphological characteristics of tomato plants (Solanum lycopersicum L.) are a source of genetic variation in efforts to improve the quality of tomatoes in plant breeding programs. Breeding programs focus on developing genotypes with high fruit set and yield potential. Cherry tomatoes are often selected for their prolific fruiting capabilities. This study aimed to determine the morphological characteristics of six cherry tomato plant varieties. This study used a Randomized Block Design (RBD) comprising four introduced hybrid cherry tomato varieties from Japan (Chika, Chou Amai, Premium Ruby, and Aiko) with two commercial hybrid varieties from PT. Bintang Asia (Citra Asia F1 and Rempai), each with three replications. Data were analyzed using analysis of variance (ANOVA) at a 5% significance level, and orthogonal contrast analysis was adopted for mean value testing. Observations of qualitative characteristics were conducted from the vegetative phase through post-harvest. The results showed that Japanese-introduced tomatoes were superior in fruit length, sweetness, and number of fruits per plant. Meanwhile, the Chika tomato variety was superior in the number of leaves under the first bunch (8.67), weight of 10 fruits (280 g), fruit width (3.75 cm), and flesh thickness (0.45 cm). The Premium Ruby variety was superior in fruit sweetness (7.9 ºbrix) and in harvest age (64 DAT). In comparison, the Aiko variety showed superiority in bunch length (22.57 cm) and number of fruits per plant (238.33). The characteristics of introduced hybrid cherry tomato varieties from Japan can be used as material for assembling new cultivars. These findings have direct implications for increasing tomato productivity in Indonesia, providing valuable insights for future breeding programs.

##plugins.themes.bootstrap3.article.details##

References
Afifah EN, Murti RH, Wahyudhi A. 2021. Evaluation of a promising tomato line (Solanum lycopersicum) derived from mutation breeding. Biodiversitas 22 (4): 1863-1868. DOI: 10.13057/biodiv/d220432.
Aumentado HD, Bengoa J, Balendres MA. 2024. Unravelling the diversity of cherry tomato (Solanum lycopersicum var. cerasiforme) seed microbes and their effect on seed health. J Trop Biodivers Biotechnol 9 (1): jtbb84919. DOI: 10.22146/jtbb.84919.
Blanca J, Montero-Pau J, Sauvage C, Bauchet G, Illa E, Díez MJ, Francis D, Causse M, van der Knaap E, Cañizares J. 2015. Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genom 16: 257. DOI: 10.1186/s12864-015-1444-1.
Casals J, Rivera A, Sabaté J, Romero del Castillo R, Simó J. 2018. Cherry and fresh market tomatoes: differences in chemical, morphological, and sensory traits and their implications for consumer acceptance. Agronomy 9 (1): 9. DOI: 10.3390/agronomy9010009.
Chen J, Pan B, Li Z, Xu Y, Cao X, Jia J, Shen H, Sun L. 2023. Fruit shape loci sun, ovate, fs8.1 and their interactions affect seed size and shape in tomato. Front Plant Sci 13: 1091639. DOI: 10.3389/fpls.2022.1091639.
FAOSTAT [Food and Agricultural Commodities Statistics]. 2018. Food and Agricultural Commodities Statistics. http://faostat.fao.org/.
Figás M, Prohens J, Raigón MD, Fernández-de-?ordova P, Fita A, Soler S. 2015. Characterization of a collection of local varieties of tomato (Solanum lycopersicum L.) using conventional descriptors and the high-throughput phenomics tool tomato analyzer. Genet Resour Crop Evol 62 (2): 189-204. DOI: 10.1007/s10722-014-0142-1.
García-Martínez S, Grau A, Alonso A, Carbonell P, Salinas JF, Cabrera JA, Ruiz JJ. 2020. UMH1400 and UMH1401: New cherry tomato breeding lines resistant to virus. HortScience 55 (3): 395-396. DOI: 10.21273/HORTSCI14710-19.
IPGRI [International Plant Genetic Resources Institute]. 1996. Descriptor for tomatos (Lycopersicum spp.). Italia (IT): IPGRI, AVRDC, CATIE, Jones, Okhlahoma.
Kapoor L, Simkin AJ, George Priya Doss C, Siva R. 2022. Fruit ripening: Dynamics and integrated analysis of carotenoids and anthocyanins. BMC Plant Biol 22: 27. DOI: 10.1186/s12870-021-03411-w.
Kutz TS, Cardoso J, Woyann LG, Abboud ACS, Finatto T, Vargas TO. 2022. Morphological and molecular characterisation of tomato accessions for breeding for organic farming systems in Brazil. Biol Agric Horicult 39: 115-128. DOI: 10.1080/01448765.2022.2135137.
Lazzaro MD, Wu S, Snouffer A, Wang Y, van der Knaap E. 2018. Plant organ shapes are regulated by protein interactions and associations with microtubules. Front Plant Sci 9: 1766. DOI: 10.3389/fpls.2018.01766.
Maciel GM, Finzi RR, Carvalho FJ, Marquez GR, Clemente AA. 2018. Agronomic performance and genetic dissimilarity among cherry tomato genotypes. Horticultura Brasileira 36: 167-172. DOI: 10.1590/S0102-053620180203.
Nakayama H, Ichihashi Y, Kimura S. 2023. Diversity of tomato leaf form provides novel insights into breeding. Breed Sci 73 (1): 76-85. DOI: 10.1270/jsbbs.22061.
Quinet M, Angosto T, Yuste-Lisbona FJ, Blanchard-Gros R, Bigot S, Martinez JP, Lutts S. 2019. Tomato fruit development and metabolism. Front Plant Sci 29: 1554. DOI: 10.3389/fpls.2019.01554.
Rahul S, Rahman MM, Rakibuzzaman M, Islam MN, Jamal Uddin AF. 2018. Study on growth and yield characteristics of twelve cherry tomato lines. J Biosci Agric Res 17 (01): 1403-1409. DOI: 10.18801/jbar.170118.1173.
Rothan C, Diouf I, Causse M. 2019. Trait discovery and editing in tomato. Plant J 97 (1): 73-90. DOI: 10.1111/tpj.14152.
Rowland SD, Zumstein K, Nakayama H, Cheng Z, Flores AM, Chitwood DH, Maloof JN, Sinha NR. 2020. Leaf shape is a predictor of fruit quality and cultivar performance in tomato. New Phytol 226 (3): 851-865. DOI: 10.1111/nph.16403.
Sadiyah H, Ashari S, Waluyo B, Soegianto A. 2021. Genetic diversity and relationship of husk tomato (Physalis spp.) from East Java Province revealed by SSR markers. Biodiversitas 22 (1): 184-192. DOI: 10.13057/biodiv/d220124.
Shah M A, Khan AI, Awan FS, Sadaqat HA, Bahadur S, Rasheed A, Baloch FS. 2015. Genetic diversity of some tomato cultivars and breeding lines commonly used in Pakistani breeding programs. Turk J Agric Food Technol 3 (3): 126-132. DOI: 10.24925/turjaf.v3i3.126-132.249.
Suminar E, Budiarto R, Nuraini A, Mubarok S, Ezura H. 2022. Morpho-physiological responses of iaa9 tomato mutants to different levels of PEG simulated drought stress. Biodiversitas 23 (5): 3115-3126. DOI: 10.13057/biodiv/d230639.
Sutjahjo SH, Herison C, Sulastrini I, Marwiyah S. 2015. Estimation of genetic diversity of several growth and yield characters in 30 local tomato genotypes. Hortic J 25 (4): 304-310. DOI: 10.21082/jhort.v25n4.2015.p304-310. [Indonesian]
Swarup S, Cargill EJ, Crosby K, Flagel L, Kniskern J, Glenn KC. 2020. Genetic diversity is indispensable for plant breeding to improve crops. Crop Sci 61 (2): 839-852. DOI: 10.1002/csc2.20377.
UPOV [International Union for the Protection of New Varieties of Plants]. 2011. Tomato. UPOV, Geneva.
Wahyudi A, Ariyani D, Ma G, Inaba R, Fukasawa C, Nakano R, Motohashi R. 2018. Functional analyses of lipocalin proteins in tomato. Plant Biotechnol 35 (4): 303-312. DOI: 10.5511/plantbiotechnology.18.0620a.
Wahyudi A, Fukazawa C, Motohashi R. 2020. The function of SlTILs and SlCHL under heat and oxidative stresses in tomato. Plant Biotechnol 37 (3): 335-341. DOI: 10.5511/plantbiotechnology.20.0422a.
Wahyudi A, Syukur M. 2021. Multi-location evaluation of yield component character and proximate analysis of cowpea grown in Lampung Province, Indonesia. Biodiversitas 22 (10): 4246-4253. DOI: 10.13057/biodiv/d221015.
Zhou Q, Liu Z, Xin Z, Daryanto S, Wang L, Qian J, Wang Y, Liang W, Qin X, Zhao Y, Li X. 2019. Relationship between seed morphological traits and wind dispersal trajectory. Funct Plant Biol 46 (12): 1063-1071. DOI: 10.1071/FP19087.