Assessing the climatic impacts on abundance of Mansonia annulifera, Ma. indiana, and Ma. uniformis (Diptera: Culicidae) in Central Thailand

##plugins.themes.bootstrap3.article.main##

ARINA ABDULLOH
TANAWAT CHAIPHONGPACHARA
SEDTHAPONG LAOJUN

Abstract

Abstract. Abdulloh A, Chaiphongpachara T, Laojun S. 2024. Assessing the climatic impacts on abundance of Mansonia annulifera, Ma. indiana, and Ma. uniformis (Diptera: Culicidae) in Central Thailand. Biodiversitas 25: 4736-4744. Mansonia mosquitoes (Diptera: Culicidae) are important vectors for transmitting filarial nematodes, including Brugia malayi and Wuchereria bancrofti, which cause lymphatic filariasis in humans. In this study, we used a Poisson regression model to evaluate the impact of climatic variables atmospheric pressure, rainfall, relative humidity, temperature, and wind speed on the abundance of three Mansonia mosquito species, including Ma. annulifera, Ma. indiana, and Ma. uniformis in Central Thailand. Over the period from November 2021 to October 2022, we collected the mosquitoes in three villages: Rua Village, Wat Khok Ket Village, and Khlong Bang Kae Village using BG-Pro CDC-style traps equipped with dry ice, BG-lure, and an ultraviolet light system, operating from 6:00 PM to 6:00 AM for three consecutive days each month. Our analysis revealed significant associations between several climatic factors and mosquito abundance. For Ma. annulifera, each unit increase in temperature and relative humidity significantly increased mosquito abundance by 83.2% and 16.2%, respectively (p<0.05). In contrast, increases in wind speed, atmospheric pressure, and rainfall correspondingly decreased abundance by 57.6%, 10.3%, and 0.7% (p<0.05). For Ma. indiana, rises in temperature, atmospheric pressure, and rainfall notably increased mosquito counts by 119.3%, 30.1%, and 0.6%, respectively (p<0.05). Conversely, an increase in wind speed led to a significant reduction of 43.2% (p<0.05). In the case of Ma. uniformis, temperature, and rainfall positively influenced mosquito abundance by 114.5% and 0.7%, respectively (p<0.05), while a rise in relative humidity resulted in a 3% reduction (p<0.05). These findings have significant practical implications, providing crucial insights into predicting future shifts in mosquito populations in response to climatic changes, thereby empowering the surveillance and control of mosquito-borne diseases in this region.

##plugins.themes.bootstrap3.article.details##

References
Adeleke ED, Shittu RA, Beierkuhnlein C, Thomas SM. 2022. High wind speed prevents the establishment of the disease vector mosquito Aedes albopictus in its climatic niche in Europe. Front Environ Sci 10: 846243. DOI: 10.3389/fenvs.2022.846243.
Amorim JA, de Oliveira TMP, de Sá ILR, da Silva TP, Sallum MAM. 2023. DNA Barcodes of Mansonia (Mansonia) Blanchard, 1901 (Diptera, Culicidae). Genes 14: 1127. DOI: 10.3390/genes14061127.
Asgarian TS, Moosa-Kazemi SH, Sedaghat MM. 2021. Impact of meteorological parameters on mosquito population abundance and distribution in a former malaria endemic area, Central Iran. Heliyon 7 (12): e08477. DOI: 10.1016/j.heliyon.2021.e08477.
Azevedo KEX, Magalhães DM, de Andrade Moral R, Bento JMS. 2023. Weathering the hunt: The role of barometric pressure in predator insects' foraging behaviour. Ecol Evol 13 (8): e10416. DOI: 10.1002/ece3.10416.
Baril C, Pilling BG, Mikkelsen MJ, Sparrow JM, Duncan CAM, Koloski CW, LaZerte SE, Cassone BJ. 2023. The influence of weather on the population dynamics of common mosquito vector species in the Canadian Prairies. Parasit Vectors 16 (1): 153. DOI: 10.1186/s13071-023-05760-x.
Bashar K, Tuno N. 2014. Seasonal abundance of Anopheles mosquitoes and their association with meteorological factors and malaria incidence in Bangladesh. Parasit Vectors 7: 442. DOI: 10.1186/1756-3305-7-442.
Chaiphongpachara T, Laojun S, Sumruayphol S, Suwandittakul N, Suwannarong K, Pimsuka S. 2024. Investigating the impact of climate and seasonality on mosquito (Diptera: Culicidae) vector populations in the connecting areas of the Tenasserim range forests in Thailand. Acta Trop 259: 107380. DOI: 10.1016/j.actatropica.2024.107380.
Chaiphongpachara T, Laojun S. 2019a. Annual variability of wing morphology in Culex sitiens Wiedemann (Diptera, Culicidae) mosquito vectors from the coastal area of Samut Songkhram province, Thailand. J Parasitol Res 2009: 3978965. DOI: 10.1155/ 2019/3978965.
Chaiphongpachara T, Laojun S. 2019b. Variation over time in wing size and shape of the coastal malaria vector Anopheles (Cellia) epiroticus Linton and Harbach (Diptera: Culicidae) in Samut Songkhram, Thailand. J Adv Vet Anim Res 6 (2): 208-214. DOI: 10.5455/javar.2019.f334.
Chaiphongpachara T, Moolrat L. 2017. Insecticide resistance of temephos on Aedes aegypti as dengue vector in Samut Songkhram, Thailand. Ann Trop Med Public Health 10 (6): 1439-1442. DOI: 10.4103/ATMPH.ATMPH_127_17.
Dalilah D, Anwar C, Syafruddin D, Pahlepi RI, Saleh I. 2024. Biodiversity, ecology, and bionomic aspects of Anopheles mosquitoes during the dry season in southern Sumatra, Indonesia. Biodiversitas 25 (4): 1644-1654. DOI: 10.13057/biodiv/d250434.
de Mello CF, Alencar J. 2021. Dispersion pattern of Mansonia in the surroundings of the Amazon Jirau Hydroelectric Power plant. Sci Rep 11 (1): 24273. DOI: 10.1038/s41598-021-03682-1.
de Mello CF, Figueiró R, Roque RA, Maia DA, da Costa Ferreira V, Guimarães AÉ, Alencar J. 2022. Spatial distribution and interactions between mosquitoes (Diptera: Culicidae) and climatic factors in the Amazon, with emphasis on the tribe Mansoniini. Sci Rep 12 (1): 16214. DOI: 10.1038/s41598-022-20637-2.
Drakou K, Nikolaou T, Vasquez M, Petric D, Michaelakis A, Kapranas A, Papatheodoulou A, Koliou M. 2020. The effect of weather variables on mosquito activity: A snapshot of the main point of entry of cyprus. Intl J Environ Res Public Health 17 (4): 1403. DOI: 10.3390/ijerph17041403.
Famakinde DO. 2018. Mosquitoes and the lymphatic filarial parasites: Research trends and budding roadmaps to future disease eradication. Trop Med Infect Dis 3 (1): 4. DOI: 10.3390/tropicalmed3010004.
Fansiri T, Jaichapor B, Pongsiri A, Singkhaimuk P, Khongtak P, Chittham W, Pathawong N, Pintong D, Sujarit B, Ponlawat A. 2024. Species abundance and density of malaria vectors in Western Thailand and implications for disease transmission. Curr Res Parasitol Vector Borne Dis 5: 100170. DOI: 10.1016/j.crpvbd.2024.100170.
Fimia-Duarte R, Osés-Rodríguez R, Alarcón-Elbal PM, Aldaz-Cárdenas JW, Roig-Boffill BV, de la Fé-Rodríguez PY. 2020. Mathematical modeling of the effects of atmospheric pressure on mosquito (Diptera: Culicidae) population density in Villa Clara, Cuba. Rev Fac Med 68 (4): 541-549. DOI: 10.15446/revfacmed.v68n4.79516.
Galardo AKR, Hijjar AV, Falcão LLO, Carvalho DP, Ribeiro KAN, Silveira GA, Neto NFS, Saraiva JF. 2022. Seasonality and biting behavior of Mansonia (Diptera, Culicidae) in rural settlements near Porto Velho, State of Rondônia, Brazil. J Med Entomol 59 (3): 883-890. DOI: 10.1093/jme/tjac016.
Gass RF, Deesin T, Sucharit S, Surathin K, Vutikes S. 1983. Dispersal and flight range studies on Mansonia annulata, Ma. indiana, and Ma. uniformis (Diptera: Culicidae) in Southern Thailand. J Med Entomol 20 (3): 288-293. DOI: 10.1093/jmedent/20.3.288.
Giesen C, Roche J, Redondo-Bravo L, Ruiz-Huerta C, Gomez-Barroso D, Benito A, Herrador Z. 2020. The impact of climate change on mosquito-borne diseases in Africa. Pathog Glob Health 114 (6): 287-301. DOI: 10.1080/20477724.2020.1783865.
Golding N, Wilson AL, Moyes CL, Cano J, Pigott DM, Velayudhan R, Brooker SJ, Smith DL, Hay SI, Lindsay SW. 2015. Integrating vector control across diseases. BMC Med 13: 249. DOI: 10.1186/s12916-015-0491-4.
Ha TV, Kim W, Nguyen-Tien T, Lindahl J, Nguyen-Viet H, Thi NQ, Nguyen HV, Unger F, Lee HS. 2021. Spatial distribution of Culex mosquito abundance and associated risk factors in Hanoi, Vietnam. PLoS Negl Trop Dis 15 (6): e0009497. DOI: 10.1371/journal.pntd.0009497.
Harbach RE. 2023. Mosquito Classification. (Accessed 20 December 2023). http://www. mosquito-taxonomic-inventory.info.
Haufe WO. 1954. The effects of atmospheric pressure on the flight responses of Aëdes aegypti (L.). Bull Entomol Res 45 (3): 507-526. DOI: 10.1017/S000748530002959X.
Hwang M-J, Kim H-C, Klein TA, Chong S-T, Sim K, Chung Y, Cheong H-K. 2020. Comparison of climatic factors on mosquito abundance at US Army Garrison Humphreys, Republic of Korea. PLoS One 15 (10): e0240363. DOI: 10.1371/journal.pone.0240363.
Kirik H, Burtin V, Tummeleht L, Kurina O. 2021. Friends in all the green spaces: Weather dependent changes in urban mosquito (Diptera: Culicidae) abundance and diversity. Insects 12 (4): 352. DOI: 10.3390/insects12040352.
Laojun S, Changbunjong T, Abdulloh A, Chaiphongpachara T. 2024. Geometric morphometrics to differentiate species and explore seasonal variation in three Mansonia species (Diptera: Culicidae) in central Thailand and their association with meteorological factors. Med Vet Entomol 38 (3): 325-340. DOI: 10.1111/mve.12720.
Lim A-Y, Cheong H-K, Chung Y, Sim K, Kim J-H. 2021. Mosquito abundance in relation to extremely high temperatures in urban and rural areas of Incheon Metropolitan City, South Korea from 2015 to 2020: An observational study. Parasit Vectors 14 (1): 559. DOI: 10.1186/s13071-021-05071-z.
Ma C-S, Zhang W, Peng Y, Zhao F, Chang X-Q, Xing K, Zhu L, Ma G, Yang H-P, Rudolf VHW. 2021. Climate warming promotes pesticide resistance through expanding overwintering range of a global pest. Nat Commun 12 (1): 5351. DOI: 10.1038/s41467-021-25505-7.
Mazarire TT, Lobb L, Newete SW, Munhenga G. 2024. The impact of climatic factors on temporal mosquito distribution and population dynamics in an area targeted for sterile insect technique pilot trials. Intl J Environ Res Public Health 21 (5): 558. DOI: 10.3390/ijerph21050558.
Meetham P, Kumlert R, Gopinath D, Yongchaitrakul S, Tootong T, Rojanapanus S, Padungtod C. 2023. Five years of post-validation surveillance of lymphatic filariasis in Thailand. Infect Dis Poverty 12 (1): 113. DOI: 10.1186/s40249-023-01158-0.
Muñoz-Pichardo JM, Pino-Mejías R, García-Heras J, Ruiz-Muñoz F, González-Regalado ML. 2021. A multivariate Poisson regression model for count data. J Appl Stat 48 (13-15): 2525-2541. DOI: 10.1080/02664763.2021.1877637.
Rattanarithikul R, Harrison BA, Panthusiri P, Coleman RE. 2005. Illustrated keys to the mosquitoes of Thailand I. Background; geographic distribution; lists of genera, subgenera, and species; and a key to the genera. Southeast Asian J Trop Med Public Health 36 Suppl 1: 1-80.
Rattanarithikul R, Harrison BA, Panthusiri P, Peyton EL, Coleman RE. 2006. Illustrated keys to the mosquitoes of Thailand: III. Genera Aedeomyia, Ficalbia, Mimomyia, Hodgesia, Coquillettidia, Mansonia, and Uranotaenia. Southeast Asian J Trop Med Public Health 37 Suppl 1: 1-85.
Rojanapanus S, Toothong T, Boondej P, Thammapalo S, Khuanyoung N, Santabutr W, Prempree P, Gopinath D, Ramaiah KD. 2019. How Thailand eliminated lymphatic filariasis as a public health problem. Infect Dis Poverty 8: 38. DOI: 10.1186/s40249-019-0549-1.
Saratapeian N, Phantana S, Chansiri K. 2002. Susceptibility of Mansonia indiana (Diptera: Culicidae) to nocturnally subperiodic Brugia malayi (Spirurida: Filariodea). J Med Entomol 39 (1): 215-217. DOI: 10.1603/0022-2585-39.1.215.
Sumruayphol S, Chaiphongpachara T, Samung Y, Ruangsittichai J, Cui L, Zhong D, Sattabongkot J, Sriwichai P. 2020. Seasonal dynamics and molecular differentiation of three natural Anopheles species (Diptera: Culicidae) of the Maculatus group (Neocellia series) in malaria hotspot villages of Thailand. Parasit Vectors 13: 574. DOI: 10.1186/s13071-020-04452-0.
Tahir F, Bansal D, Rehman AU, Ajjur SB, Skariah S, Belhaouari SB, Al-Romaihi H, Al-Thani MHJ, Farag E, Sultan AA, Al-Ghamdi SG. 2023. Assessing the impact of climate conditions on the distribution of mosquito species in Qatar. Front Public Health 10: 970694. DOI: 10.3389/fpubh.2022.970694.
van den Berg H, Kelly-Hope LA, Lindsay SW. 2013. Malaria and lymphatic filariasis: The case for integrated vector management. Lancet Infect Dis 13 (1): 89-94. DOI: 10.1016/S1473-3099(12)70148-2.
Wilke ABB, Vasquez C, Carvajal A, Moreno M, Petrie WD, Beier JC. 2022. Evaluation of the effectiveness of BG-Sentinel and CDC light traps in assessing the abundance, richness, and community composition of mosquitoes in rural and natural areas. Parasit Vectors 15 (1): 51. DOI: 10.1186/s13071-022-05172-3.
World Health Organization. 2023. Lymphatic Filariasis. (Accessed 22 December 2023). https://www.who.int/news-room/fact-sheets/detail/lymphatic-filariasis.
Yan J, Green K, Noel K, Kim C-H, Stone CM. 2021. Effects of seasonality and developed land cover on Culex mosquito abundance and microbiome diversity. Front Microbiol 15: 1332970. DOI: 10.3389/fmicb.2024.1332970.

Most read articles by the same author(s)

1 2 > >>