New record and potential spatial distribution of Curcuma sumatrana (Zingiberaceae): An endemic wild turmeric in Sumatra, Indonesia

##plugins.themes.bootstrap3.article.main##

FARADILA SYAFIRA
NURAINAS
https://orcid.org/0000-0003-1682-2976
SYAMSUARDI
https://orcid.org/0000-0001-8351-6528

Abstract

Abstract. Syafira F, Nurainas, Syamsuardi. 2024. New record and potential spatial distribution of Curcuma sumatrana (Zingiberaceae): An endemic wild turmeric in Sumatra, Indonesia. Biodiversitas 25: 4127-4138. Curcuma sumatrana Miq. is a Sumatran turmeric species with medicinal potential. However, it remains underutilized and is classified as vulnerable by the IUCN. Its vulnerability is aggravated by limited knowledge of its distribution, a need for more data on habitat preferences, and habitat degradation. Field observations revealed significant morphological variations among populations, likely influenced by environmental factors. This study assessed the morphology, microhabitat preferences, and spatial distribution of C. sumatrana in West Sumatra, Indonesia. Surveys and laboratory observations highlighted morphological traits, such as leaf and ligule length and width, significantly contribute to these observed variations. Notably, the leaf shape differed between open and shaded areas, being narrowly elliptic in open areas and broadly elliptic in shaded areas. Populations in Koto Malintang and Lubuk Minturun showed distinct differences, separated by six morphological traits. The C. sumatrana prefers habitats with fertile soils, moderate plant diversity, and open land cover, often coexisting with species like Dendrocnide stimulans (L.fil.) Chew, Macaranga tanarius (L.) Müll.Arg., and Diplazium sp. Maximum Entropy modeling (AUC 0.944) predicted a highly suitable habitat of 918 hectares in the western Bukit Barisan range. The model suggests distribution is influenced by soil type and precipitation patterns during the seasonal, warmest, and coldest quarters, as well as land cover. New records from West Sumatra extend the species' known range, reaffirming its vulnerable status with a potential risk of becoming endangered.

##plugins.themes.bootstrap3.article.details##

References
Abolmaali SM-R, Tarkesh M, Bashari H. 2018. MaxEnt modeling for predicting suitable habitats and identifying the effects of climate change on a threatened species, Daphne mucronata, in Central Iran. Ecol Inform 43: 116-123. DOI: 10.1016/j.ecoinf.2017.10.002.
Alamsjah F, Agustien A, Alam TWN. 2023. Antibacterial activity test of rhizome extract from koenih rimbo (Curcuma sumatrana Miq.), a Sumatra endemic plant, against gram-positive bacteria. Bioscientist 11 (1): 561-570. DOI: 10.33394/bioscientist.v11i1.7697. [Indonesian]
Ali F, Khan N, Khan AM, Ali K, Abbas F. 2023. Species distribution modelling of Monotheca buxifolia (Falc.) A. DC.: Present distribution and impacts of potential climate change. Heliyon 9 (2): e13417. DOI: 10.1016/j.heliyon.2023.e13417.
Ardiyani M, Anggara A, Leong-Korni?ková J. 2011. Rediscovery of Curcuma sumatrana (Zingiberaceae) endemic to West Sumatra. Blumea 56 (1): 6-9. DOI: 10.3767/000651911X558360.
Asigbaase M, Sjogersten S, Lomax BH, Dawoe E. 2019. Tree diversity and its ecological importance value in organic and conventional cocoa agroforests in Ghana. PLoS One 14 (1): e0210557. DOI: 10.1371/journal.pone.0210557.
Bachman S, Moat J, Hill AW, De La Torre J, Scott B. 2011. Supporting red list threat assessment with GeoCAT: goespatial conservation assessment tool. Zookeys (150). DOI: 10.3897/zookeys.150.2109.
Beentje HJ. 2016. The Kew Plant Glossary: An Illustrated Dictionary of Plant Terms. 2nd edition. Royal Botanic Gardens, Kew. Kew Publishing, Richmond, Virginia, US.
BKSDA. 2012. Buku Informasi Kawasan Konservasi Balai KSDA Sumatera Barat. BKSDA Sumatera Barat, Indonesia. [Indonesian]
Chen L, Huang J-G, Alam SA, Zhai L, Dawson A, Stadt KJ, Comeau PG. 2017. Drought causes reduced growth of trembling Aspen in Western Canada. Glob Change Biol 23: 2887-2902. DOI: 10.1111/gcb.13595.
Cubey R. 2022. Royal Botanic Garden Edinburgh Herbarium (E). Royal Botanic Garden Edinburgh. Occurence Dataset. DOI: 10.15468/ypoair.
Daï EH, Houndonougbo JSH, Idohou R, Ouédraogo A, Kakaï RG, Hotes S, Assogbadjo AE. 2023. Modeling current and future distribution patterns of Uvaria chamae in Benin (West Africa): Challenges and opportunities for its sustainable management. Heliyon 9 (2): e13658. DOI: 10.1016/j.heliyon.2023.e13658.
Fan R, Li C, Fan Y, Xu H, Zhang H, Chen L, Wang N. 2024. The changes in diversity of vegetation and foliar stable isotopes during the terrestrial plant succession of a subtropical forest and their ecological implications. Ecol Indic 166: 112586. DOI: 10.1016/j.ecolind.2024.112586.
Fathia AA, Hilwan I, Wibowo C. 2019. Land rehabilitation on post-fire area with different types of soil in Gunung Mas Regency, Central Kalimantan. Media Konservasi 24 (1): 20-28. DOI: 10.29244/medkon.24.1.20-28. [Indonesian]
Fitriani A, Arifin YF, Hatta GM, Wahdah R, Payung D. 2022. Suitability habitat model of Mangifera rufocostata under different climatic and environmental conditions. Biodiversitas 23 (9): 4570-4577. DOI: 10.13057/biodiv/d230924.
Gong L, Li X, Wu S, Jiang L. 2022. Prediction of potential distribution of soybean in the frigid region in China with maxent modeling. Ecol Inform 72: 101834. DOI: 10.1016/j.ecoinf.2022.101834.
Gufi Y, Manaye A, Tesfamariam B, Abrha H, Tesfaye M, Hintsa S. 2023. Modeling impacts of climate change on the geographic distribution and abundances of Tamarindus indica in Tigray region, Ethiopia. Heliyon 9 (7): e17471. DOI: 10.1016/j.heliyon.2023.e17471.
Gunawan G, Anwar K, Gafur A, Hilaliyah R, Waro AA, Hikmah N, Sakinah S, Erwansyah M, Susilawati D, Lestari RD, Triana D. 2023. Predicting the current potential geographical distribution of Baccaurea (B. lanceolata and B. motleyana) in South Kalimantan, Indonesia. Biodiversitas 24 (2): 930-939. DOI: 10.13057/biodiv/d240232.
Gunawan G, Sulistijorini S, Chikmawati T, Sobir S. 2021. Predicting suitable areas for Baccaurea angulata in Kalimantan, Indonesia using Maxent modelling. Biodiversitas 22 (5): 2646-2653. DOI: 10.13057/biodiv/d220523.
Halimatussakdiah, Amna U, Mardina V. 2020. Antioxidant Activity of methanol extract of Diplazium esculentum (Retz.) Sw. leaves collected from Aceh. IOP Conf Ser: Mater Sci Eng 725: 012082. DOI: 10.1088/1757-899X/725/1/012082.
Hammer Ø, Harper DAT, Ryan PD. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4 (1): 1-9.
Haq SM, Waheed M, Darwish M, Siddiqui MH, Goursi UH, Kumar M, Song L, Bussmann RW. 2024. Biodiversity and carbon stock of the understory vegetation as indicators for forest health in the Zabarwan Mountain Range Indian Western Himalaya. Ecol Indic 159: 111685. DOI: 10.1016/j.ecolind.2024.111685.
Harapan TS, Agung AP, Handika H, Novarino W, Tjong DH, Tomlinson KW. 2020. New records and potential geographic distribution of elongated caecilian, Ichthyophis elongatus Taylor, 1965 (Amphibia, Gymnophiona, Ichthyophiidae), endemic to West Sumatra, Indonesia. Check List 16 (6): 1695-1701. DOI: 10.15560/16.6.1695.
Harapan TS, Nurainas N, Syamsuardi, Taufiq A. 2022. Identifying the potential geographic distribution for Castanopsis argentea and C. tungurrut (Fagaceae) in the Sumatra Conservation Area Network, Indonesia. Biodiversitas 23 (4): 1726-1733. DOI: 10.13057/biodiv/d230402.
He P, Li Y, Xu N, Peng C, Meng F. 2021. Predicting the suitable habitats of parasitic desert species based on a niche model with Haloxylon ammodendron and Cistanche deserticola as examples. Ecol Evol 11 (24): 17817-17834. DOI: 10.1002/ece3.8340.
Hermansah H, Nurainas N, Maira L, Suryani S, Hakim LN, Romadhan P. 2023. The status and stocks of soil nutrients under different microhabitats of medicinal crops in West Sumatra. AIP Conf Proc 2370: 120001. DOI: 10.1063/5.0128190.
Ho SY, Wasli MEB, Perumal M. 2019. Evaluation of physicochemical properties of sandy-textured soils under smallholder agricultural land use practices in Sarawak, East Malaysia. Appl Environ Soil Sci 2019 (1): 7685451. DOI: 10.1155/2019/7685451.
Hossain MA, Akamine H, Ishimine Y, Teruya R, Aniya Y, Yamawaki K. 2009. Effects of relative light intensity on the growth, yield and curcumin content of turmeric (Curcuma longa L.) in Okinawa, Japan. Plant Prod Sci 12 (1): 29-36. DOI: 10.1626/pps.12.29.
Hou Z, Sun Z, Du G, Shao D, Zhong Q, Yang S. 2023. Assessment of suitable cultivation region for Pepino (Solanum muricatum) under different climatic conditions using the MaxEnt model and adaptability in the Qinghai-Tibet Plateau. Heliyon 9 (8): e18974. DOI: 10.1016/j.heliyon.2023.e18974.
Huang Y, Zeng Y, Jiang P, Chen H, Yang J. 2022. Prediction of potential geographic distribution of endangered relict tree species Dipteronia sinensis in China based on maxent and GIS. Pol J Environ Stud 31 (4): 3597-3609. DOI: 10.15244/pjoes/146936.
Idrees M, Pathak ML, Memon NH, Khan S, Zhang ZY, Gao XF. 2021. Morphological and morphometric analysis of genus Eriobotrya Lindl. (Rosaceae). J Anim Plant Sci 31 (4): 1087-1100. DOI: 10.36899/JAPS.2021.4.0306.
Juliasih NKA, Adnyana IMDM. 2023. Ethnopharmacology and species diversity of Pteridophyta in Cyathea Park, Bali: A field study and literature review. Res Sq 2023: 1-21. DOI: 10.21203/rs.3.rs-2497775/v2.
Larsen K, Ibrahim H, Khaw SH, Saw LG. 1999. Gingers of Peninsular Malaysia and Singapore. Natural History Publications, Borneo.
Lee J-T, Chu M-Y, Lin Y-S, Kung K-N, Lin W-C, Lee M-J. 2020. Root traits and biomechanical properties of three tropical pioneer tree species for forest restoration in landslide areas. Forests 11 (2): 179. DOI: 10.3390/f11020179.
Li Y, Wang Y, Zhao C, Du X, He P, Meng F. 2024. Predicting the spatial distribution of three Ephedra species under climate change using the MaxEnt model. Heliyon 10 (12): e32696. DOI: 10.1016/j.heliyon.2024.e32696.
Mkala EM, Mwanzia V, Nzei J et al. 2023. Predicting the potential impacts of climate change on the endangered endemic Annonaceae species in East Africa. Heliyon 9 (6): e17405. DOI: 10.1016/j.heliyon.2023.e17405.
Mueller-Dombois D, Ellenberg H. 1974. Aims and Methods of Vegetation Ecology. John Wiley and Sons, New York.
Muharani M, Chairul, Nurainas. 2022. Vegetation analysis and population structure of plants at forest area, Solok Regency, West Sumatra, Indonesia. Intl J Progress Sci Technol 33 (2): 188-194. DOI: 10.52155/ijpsat.v33.2.4470.
Muharani M. 2022. Species authentication, ethnobotanical study, and microhabitat of Bilongkiang (Zingiber sp. Zingiberaceae) in Solok Regency. [Thesis]. Universitas Andalas, Padang. [Indonesian]
Nawawi JA. 2021. Effect of Ethanol Extract of Endemic Sumatran rhizome (Curcuma sumatrana, zingiberaceae) on intelligence Level, Brain Histological Structure and Concentration of Malondialdehydes in Mice Induced by Monosodium Glutamate. [Thesis]. Universitas Andalas, Padang. [Indonesian]
Newman M, Lhuillier A, Poulsen AD. 2004. Checklist of the Zingiberaceae of Malesia. Blumea Supplement 16, Nationaal Herbarium Nederland, Universiteit Leiden, The Netherlands.
Nhunda DM, Semoka JM, Hamisi T. 2024. Assessment of soil fertility status in selected fields under maize production in Kongwa District, Dodoma Region, Tanzania. J Agric Ecol Res Intl 25 (1): 32-47. DOI: 10.9734/jaeri/2024/v25i1570.
Nurainas N, Ardiyani M. 2019. Curcuma sumatrana. The IUCN Red List of Threatened Species 2019. DOI: 10.2305/IUCN.UK.2019-2.RLTS.T117310829A124281750.
Pradhan P. 2015. Potential distribution of Monotropa uniflora as a surrogate for range of Monotropoideae (Ericaceae) in South Asia. Biodiversitas 16 (2): 109-115. DOI: 10.13057/biodiv/d160201.
Rahman AT, Rafia, Jethro A et al. 2022. In silico study of the potential of endemic Sumatra wild turmeric rhizomes (Curcuma sumatrana: Zingiberaceae) as anticancer. Pharmacogn J 14 (6): 806-812. DOI: 10.5530/pj.2022.14.171.
Rahmi N, Nurainas N, Syamsuardi S. 2023. Diversity, distribution of the ginger family (Zingiberaceae) in West Sumatra based on herbarium specimens and its potency for genetic resource essential oil. IOP Conf Ser: Earth Environ Sci 1255: 012030. DOI: 10.1088/1755-1315/1255/1/012030.
Rambey R, Susilowati A, Rangkuti AB, Onrizal O, Desrita, Ardi R, Hartanto A. 2021. Plant diversity, structure and composition of vegetation around Barumun Watershed, North Sumatra, Indonesia. Biodiversitas 22 (8): 3250-3256. DOI: 10.13057/biodiv/d220819.
Santoro A, Piras F, Yu Q. 2023. Spatial analysis of deforestation in Indonesia in the period 1950-2017 and the role of protected areas. Biodivers Conserv 2023: 1-27. DOI: 10.1007/s10531-023-02679-8.
Semwal P, Painuli S, Painuli KM et al. 2021. Diplazium esculentum (Retz.) Sw.: Ethnomedicinal, Phytochemical, and Pharmacological Overview of the Himalayan Ferns. Oxid Med Cell Longev 2021: 1917890. DOI: 10.1155/2021/1917890.
Setyawan AD, Supriatna J, Nisyawati N, Nursamsi I, Sutarno S, Sugiyarto S, Sunarto S, Pradan P, Budiharta S, Pitoyo A, Suhardono S, Setyono P, Indrawan M. 2020. Predicting potential impacts of climate change on the geographical distribution of mountainous selaginellas in Java, Indonesia. Biodiversitas 21 (10): 4866-4877. DOI: 10.13057/biodiv/d211053.
Shi J, Xia M, He G, Gonzalez NCT, Zhou S, Lan K, Ouyang L, Shen X, Jiang X, Cao F, Li H. 2024. Predicting Quercus gilva distribution dynamics and its response to climate change induced by ghgs emission through maxent modeling. J Environ Manage 357: 120841. DOI: 10.1016/j.jenvman.2024.120841.
Silva JLS, Cruz-Neto O, Tabarelli M, de Albuquerque UP, Lopes AV. 2022. Climate change will likely threaten areas of suitable habitats for the most relevant medicinal plants native to the Caatinga dry forest. Ethnobiol Conserv 11 (15): 24-48. DOI: 10.15451/ec2022-06-11.15-1-24.
Smith RL. 1977. Elements of Ecology and Field Biology. Harper & Row Publisher, New York.
Solfiyeni S, Chairul C, Marpaung M. 2016. Analisis vegetasi tumbuhan invasif di Kawasan Cagar Alam Lembah Anai, Sumatera Barat. Proceeding Biology Education Conference 13: 743-747. [Indonesian]
Solfiyeni S, Fadhlan A, Aziz A, Syahputra G, Azzahra A, Mildawati M. 2024. Vegetation diversity and habitat suitability modeling of the invasive plant Bellucia pentamera in conservation forests of West Sumatra, Indonesia. Biodiversitas 25 (2): 781-791. DOI: 10.13057/biodiv/d250238.
Solfiyeni S, Syamsuardi S, Chairul C, Mukhtar E. 2022. Impacts of invasive tree species Bellucia pentamera on plant diversity, microclimate and soil of secondary tropical forest in West Sumatra, Indonesia. Biodiversitas 23 (6): 3135-3146. DOI: 10.13057/biodiv/d230641.
Song B, Niu S, Wan S. 2016. Precipitation regulates plant gas exchange and its long-term response to climate change in a temperate grassland. J Plant Ecol 9 (5): 531-541. DOI: 10.1093/jpe/rtw010.
Song X, Gu J, Liu L, Liao Y, Ma H, Wang R, Ye Y, Li J, Shao X. 2024. Exploring the distribution and habitat preferences of Polytrichaceae (Bryophyta) in Tibet, China. Heliyon 10 (14): e34515. DOI: 10.1016/j.heliyon.2024.e34515.
Spohn M, Stendahl J. 2024. Soil carbon and nitrogen contents in forest soils are related to soil texture in interaction with pH and metal cations. Geoderma 441: 116746. DOI: 10.1016/j.geoderma.2023.116746.
Suwardi AB, Syamsuardi S, Mukhtar E, Nurainas N. 2023a. The diversity and regional conservation status of wild edible fruit species in Sumatra, Indonesia. Biodiversitas 24 (6): 3245-3257. DOI: 10.13057/biodiv/d240619.
Suwardi AB, Syamsuardi S, Mukhtar E, Nurainas N. 2023b. Potential geographic distribution of Durio oxleyanus (Malvaceae): A threatened wild fruit plant species in Sumatra, Indonesia. Pol J Environ Stud 32 (3): 2845-2853. DOI: 10.15244/pjoes/161669.
Syofiani R, Putri SD, Karjunita N. 2020. Characteristics of soil properties as determining factors for agricultural potentials in the village Silokek of national geopark area. J Agrium 17 (1): 1-6. DOI: 10.29103/agrium.v17i1.2349. [Indonesian]
Takahashi A. 2023. Plant specimens in the Museum of Nature and Human Activities, Hyogo Prefecture, Japan. National Museum of Nature and Science, Japan. DOI: 10.15468/sqctqh.
Tan Z-X, Chen X-P, Wang Y, Wang S, Wang R, Yao B-H, Yang Y-G, Kong Y-P, Qu J-P. 2024. The impact of the Qinghai-Tibet Highway on plant community and diversity. Front Plant Sci 15: 1392924. DOI: 10.3389/fpls.2024.1392924.
Teapon A, Hadun R. 2018. Evaluation of soil chemical fertility status in various soil subgroups in East Tidore District. Jurnal Agriment 3: 7-15. DOI: 10.51967/jurnalagriment.v3i1.382. [Indonesian]
Utama AP, Syamsuardi S, Arbain A. 2012. Morphometric study of Macaranga Thou leaf at The Biological Education and Research Forest (HPPB). Jurnal Biologi Universitas Andalas 1 (1): 54-62. DOI: 10.25077/jbioua.1.1.%25p.2012. [Indonesian]
Wang C, Kuzyakov Y. 2024. Soil organic matter priming: The pH effects. Glob Change Biol 30 (6): e17349. DOI: 10.1111/gcb.17349.
Wang M, Hu Z, Wang Y, Zhao W. 2023. Spatial distribution characteristics of suitable planting areas for Pyrus species under climate change in China. Plants 12 (7): 1559. DOI: 10.3390/plants12071559.
Wang Y, Wang Z. 2024. Change of spermatophyte family diversity in distribution patterns with climate change in China. Heliyon 10 (7): e28519. DOI: 10.1016/j.heliyon.2024.e28519.
Wei B, Wang R, Hou K, Wang X, Wu W. 2018. Predicting the current and future cultivation regions of Carthamus tinctorius L. using maxent model under climate change in China. Glob Ecol Conserv 16: e00477. DOI: 10.1016/j.gecco.2018.e00477.
WFO Plant List. 2024. Zingiberaceae Martinov. Published on the Internet. http://www.worldfloraonline.org/taxon/wfo-7000000651.
Wulansari D, Qodrie ENP, Dharma B, Kamal AS, Hafid L, Marlina L, Praptiwi P. 2020. Antibacterial activity of endophytic fungus Fusarium sp. CSP-4 culture extract isolated from Curcuma sumatrana Miq. Berita Biologi 19 (1): 71-76. DOI: 10.14203/beritabiologi.v19i1.3350. [Indonesian]
Xiao P, Yang T. 2024. Population morphometry of Conger myriaster (Anguilliformes: Congridae) along the coast of China: Implications for population structure and fishery management. Animals 14 (13): 2007. DOI: 10.3390/ani14132007.
Yi Y-J, Cheng X, Yang Z-F, Zhang S-H. 2016. Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecol Eng 92: 260-269. DOI: 10.1016/j.ecoleng.2016.04.010.
Yudaputra A, Astuti IP, Cropper Jr. WP. 2019. Comparing six different species distribution models with several subsets of environmental variables: Predicting the potential current distribution of Guettarda speciosa in Indonesia. Biodiversitas 20 (8): 2321-2328. DOI: 10.13057/biodiv/d200830.
Zhang X-N, Yang X-D, Li Y, He X-M, Lv G-H, Yang J-J. 2018. Influence of edaphic factors on plant distribution and diversity in the arid area of Xinjiang, Northwest China. Arid Land Res Manag 32 (1): 38-56. DOI: 10.1080/15324982.2017.1376004.

Most read articles by the same author(s)

1 2 > >>