Molecular identification of rhizospheric Actinomycetes from karst ecosystems of Gorontalo, Indonesia, and its seed germination induction capability of Zea mays var. doti

##plugins.themes.bootstrap3.article.main##

YULIANA RETNOWATI
ABUBAKAR SIDIK KATILI
NOVRI YOULA KANDOWANGKO
WAWAN PEMBENGO

Abstract

Abstract. Retnowati Y, Katili AS, Kandowangko NY, Pembengo W. 2024. Molecular identification of rhizospheric Actinomycetes from karst ecosystems of Gorontalo, Indonesia, and its seed germination induction capability of Zea mays var. doti. Biodiversitas 25: 4763-4771. Karst, as an extreme ecosystem, was a source of diverse Actinomycetes with varied biological activities. This study explored the plant-growth-promoting potential of rhizospheric Actinomycetes from the karst ecosystem of Gorontalo, with a focus on inducing seed germination in Zea mays var. doti. Four locations in Gorontalo were selected to explore Actinomycetes, targeting approximately 20 different rhizospheric plant species to isolate these microorganisms. Among the 25 isolates obtained, representing diverse morphological types from 12 rhizospheric plants, eight actinomycete isolates exhibited phosphate-solubilizing activity and produced indole-3-acetic acid (IAA). The 16S rRNA gene sequence analysis showed that approximately 75% of the isolates belonged to the Streptomyces genus, including Streptomyces cavourensis strain KRZm-02, Streptomyces sp. strain KRZm-03, Streptomyces pratensis strain KRLl-01, Streptomyces carpaticus strain KRIt-01, Streptomyces sp. strain KRIt-02, and Streptomyces aquilus strain KRPa-01. Additionally, 12.5% of the isolates were identified as Nocardiopsis alba strain KRZm-01 and Micromonospora sp. strain KRPt-01, respectively. The two isolates with the highest plant-growth-promoting potential, Streptomyces pratensis strain KRLl-01 and Streptomyces carpaticus strain KRIt-01, were further tested for their ability to promote germination of Zea mays var. doti seeds over 7 days. Among the two, Streptomyces carpaticus strain KRIt-01 exhibited the highest germination-inducing potential. Overall, the karst ecosystem of Gorontalo offers a valuable reservoir of biological resources with the potential for Plant-Growth-Promoting Rhizobacteria (PGPR). Further studies on the application of these actinomycete isolates as biofertilizers in agricultural and plantation crops could significantly contribute to improving crop growth and productivity, thereby revolutionizing agricultural practices.

##plugins.themes.bootstrap3.article.details##

References
Abd-Alla MH, El-Sayed ESA, Rasmey AHM. 2013. Indole-3-acetic acid (IAA) production by Streptomyces atrovirens isolated from rhizospheric soil in Egypt. J Biol Earth Sci 3: B182-B193.
Al-Ansari F, Ksiksi T. 2016. A quantitative assessment of germination parameters: The case of Crotalaria persica and Tephrosia apollinea. Open Ecol J 9: 13-21. DOI: 10.1038/180037b0.
Amaresan N, Kumar K, Naik JH, Bapatla KG, Mishra RK. 2018. Streptomyces in plant growth promotion: Mechanisms and role. In: Singh BP, Gupta VK, Passari AK (eds). New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier, Amsterdam. DOI: 10.1016/B978-0-444-63994-3.00008-4.
Aprilia D, Arifiani KN, Sani MF, Jumari, Wijayanti F, Setyawan A. 2021. A descriptive study of karst conditions and problems in Indonesia and the role of karst for flora, fauna, and humans. Intl J Trop Drylands 5 (2): 61-74. DOI: 10.13057/tropdrylands/t050203.
Batool M. 2023. Nutrient Management of Maize. In: Khausik P (eds). New Prospect of Maize. Intechopen. DOI: 10.5772/intechopen.112484.
Bhattacharyya PN, Jha DK. 2012. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World J Microbiol Biotechnol 28: 1327-1350. DOI: 10.1007/s11274-011-0979-9.
Boubekri K, Soumare A, Mardad I, Lyamlouli K, Hafidi M, Ouhdouch Y, Kouisni L. 2021. The screening of potassium- and phosphate-solubilizing actinobacteria and the assessment of their ability to promote wheat growth parameters. Microorganisms 9 (3): 470. DOI: 10.3390/microorganisms9030470.
Chen H, Li D, Mao Q, Xiao K. Wang K. 2019. Resource limitation of soil microbes in karst ecosystems. Sci Tot Environ 650: 241-248. DOI: 10.1016/j.scitotenv.2018.09.036.
Chukwuneme CF, Babalola OO, Kutu FR, Ojuederie OB. 2020. Characterization of Actinomycetes isolates for plant growth promoting traits and their effects on drought tolerance in maize. J Plant Interac 15 (1): 93-105. DOI: 10.1080/17429145.2020.1752833.
Cinkocki R, Lipkova N, Javorekova S, Petrova J, Makova J, medo J, Ducsay L. 2021. The impact of growth-promoting Streptomycetes isolated from rhizosphere and bulk soil on oilseed rape (Brassica napus L.). growth parameters. Sustainability 13 (10): 5704. DOI: 10.3390/su13105704.
D’Amico M, Gorra R, Freppaz M. 2015. Small-scale variability of soil properties and soil-vegetation relationships in patterned ground 2 on different lithologies (NW Italian Alps). CATENA 135: 47-58. DOI: 10.1016/j.catena.2015.07.005.
Damam M, Moinudin MK, Kausar R. 2016. Isolation and screening plant growth promoting Actinomycetes from some forest medicinal plants. Intl J Chemtech Res 9 (5): 521-528.
Essarioui A, LeBlanc N, Kistler HC, Kinkel LL. 2017. Plant community richness mediates inhibitory interactions and resource competition between Streptomyces and Fusarium populations in the rhizosphere. Microb Ecol 74: 157-167. DOI: 10.1007/s00248-016-0907-5.
Farda B, Djebaili R, Vaccarelli I, Del Gallo M, Pellegrini M. 2022. Actinomycetes from caves: An overview of their diversity, biotechnological properties, and insights for their use in soil environment. Microorganisms 10 (2): 453. DOI: 10.3390/microorganisms10020453.
Franco-Correa M, Chavarro-Anzola V. 2015. Actinobacteria as plant growth-promoting rhizobacteria. Actinobacteria - Basics and Biotechnological Applications. Intechopen. DOI: 10.5772/61291.
Ghorbanpour M, Hatami M. 2014. Biopriming of Salvia o?cinalis seed with growth promoting rhizobacteria a?ects invigoration and germination indices. J Biol Environ Sci 8 (22): 29-36.
Goldscheider N. 2019. A holistic approach to groundwater protection and ecosystem services in karst terrains. Carbonates Evaporites 34 (4): 1241-1249. DOI: 10.1007/s13146-019-00492-5.
Hu N, Li H, Tang Z, Li Z, Li G, Jiang Y, Lou Y. 2016. Community size, activity and C: N stoichiometry of soil microorganisms following reforestation in a Karst region. Eur J Soil Biol 73: 77-83. DOI: 10.1016/j.ejsobi.2016.01.007.
Kakkar A, Nizampatnam NR, Kondreddy A, Pradhan BB, Chatterjee S. 2015. Xanthomonas campestris cell-cell signalling molecule DSF (Diffusible Signal Factor) elicits innate immunity in plants and is suppressed by the exopolysaccharide xanthan. J Exp Bot 66 (21): 6697-6714. DOI: 10.1093/jxb/erv377.
Kumar A, Singh J. 2020. Biofilms forming microbes: Diversity and potential application. Plant Microb Sustain Agric 25: 173. DOI: 10.1007/978-3-030-38453-1_6.
Li F, He X, Sun Y, Zhang X, Tang X, Li Y, Yi Y. 2019. Distinc endophytes are used by diverse plant for adaptation to karst regions. Sci Rep 9 (1): 5246. DOI: 10.1038/s41598-019-41802-0.
Liu C, Huang Y, Wu F, Liu W. 2021. Plant adaptability in karst regions. J Plant Res 134 (5): 1-18. DOI: 10.1007/s10265-021-01330-3.
Liu L, Hu J, Chen X, Xu X, Yang Y, Ni J. 2022. Adaptation strategy of karst forest: Evidence from the community-weighted mean of plant functional traits. Ecol Evol 12 (3): e8680. DOI: 10.1002/ece3.8680.
Mulani R, Mehta K, Saraf M, Goswami D. 2021. Decoding the mojo of plant-growth-promoting microbiomes. Physiol Mol Plant Pathol 115: 101687. DOI: 10.1016/j.pmpp.2021.101687.
Myo EM, Ge B, Ma J, Cui H, Liu B, Shi L, Jiang M, Zhang K. 2019. Indole-3-acetic acid production by Streptomyces fradiae NKZ-259 and its formulation to enhance plant growth. BMC Microbiol 19: 155. DOI: 10.1186/s12866-019-1528-1.
Ndeddy ARJ, Babalola OO. 2016. Effect of bacterial inoculation of strains of Pseudomonas aeruginosa, Alcaligenes feacalis and Bacillus subtilis on germination, growth and heavy metal (Cd, Cr, and Ni) uptake of Brassica juncea. Intl J Phytorem 18 (2): 200-209. DOI: 10.1080/15226514.2015.1073671.
Ndeddy ARJ, Babalola OO. 2017. Identification and characterization of Cr-, Cd- and Ni- tolerant bacteria isolated from mine tailings. Bioremed J 21: 1-19. DOI: 10.1080/10889868.2017.1282933.
Okolie PI, Opara CN, Emerenini EC. 2013. Evaluation of bacterial
diversity in palm wine by 16S rDNA analysis of community DNA.
Nigerian Food J 31 (1): 83-90
Pan L, Cai B. 2023. Phosphate-solubilizing bacteria: Advances in their physiology, molecular mechanisms and microbial community effects. Microorganisms 11: 2904. DOI: 10.3390/microorganisms11122904.
Pattern CL, Glick BR. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appli Environ Microbiol 68 (8): 3795-3801. DOI: 10.1128/AEM.68.8.3795-3801.2002.
Putri AL, Sumerta IN. 2020. Selective isolation of Dactylosporangium and Micromonospora from the soil of karst cave of Semeulue Island and their antibacterial potency. Berita Biologi Ilmu-Ilmu Hayati 19 (3A): 257-268. DOI: 10.14203/beritabiologi.v19i3.3933.
Retnowati Y, Sembiring L, Moeljopawiro S, Djohan TS, Soetarto ES.
Diversity of antibiotic-producing Actinomycetes in mangrove
forest of Torosiaje, Gorontalo, Indonesia. Biodiversitas 18 (3): 1453-
DOI: 10.13057/biodiv/d180421.
Retnowati Y, Moeljopawiro S, Djohan TS, Soetarto ES. 2018. Antimicrobial activities of actinomycete isolates from rhizospheric soils in different mangrove forests of Torosiaje, Gorontalo, Indonesia. Biodiversitas 9 (6): 2196-2203. DOI: 10.13057/biodiv/d190627.
Retnowati Y, Katili AS. 2023. Antibacterial activity of sponge-associated bacteria from Torosiaje Marine Area, Gorontalo, Indonesia. Biodiversitas 24 (2): 1151-1156. DOI: 10.13057/biodiv/d240255.
Retnowati Y, Kandowangko NY, Katili AS, Pembengo W. 2024. Diversity of Actinomycetes on plant rhizosphere of karst ecosystem of Gorontalo, Indonesia. Biodiversitas 25 (3): 907-115 DOI: 10.13057/biodiv/d250301.
Saadouli I, Marasco R, Mejri L, Hamden H, Guerfali MM, Stathopoulou P, Daffonchio D, Cherif A, Ouzari H-I, Tsiamis G, Mosbah A. 2022. Diversity and adaptation properties of actinobacteria associated with Tunisian stone ruins. Front Microbiol 13: 997832. DOI: 10.3389/fmicb.2022.997832.
Saleem M, Law AD, Sahib MR, Pervaiz ZH, Zhang Q. 2018. Impact of root system architecture on rhizosphere and root microbiome. Rhizosphere 6: 47-51. DOI: 10.1016/j.rhisph.2018.02.003.
Santillán J, López-Martínez R, Aguilar-Rangel EJ, Hernández-García K, Vásquez-Murrieta MS, Cram S, Alcántara-Hernández RJ. 2021. Microbial diversity and physicochemical characteristics of tropical karst soils in the northeastern Yucatan peninsula, Mexico. Appl Soil Ecol 165: 103969. DOI: 10.1016/j.apsoil.2021.103969.
Sathya A, Vijayabharathi R, Gopalakrishnan S. 2017. Plant growth-promoting actinobacteria: A new strategy for enhancing sustainable production and protection of grain legumes. Biotechnol 7: 102-112. DOI: 10.1007/s13205-017-0736-3.
Sharma U, Kumari S, Sinha K, Kumar S. 2017. Isolation and molecular characterization of phytase producing actinobacteria of fruit orchard. The Nucleus 60 (2): 187-195. DOI: 10.1007/s13237-017-0205-8
Solans M, Messuti MI, Reiner G, Boenel M, Vobis G, Wall LG. 2019. Exploring the response of Actinobacteria to the presence of phosphorus salts sources: Metabolic and co-metabolic processes. J Basic Microbiol 59 (5): 487-495. DOI: 10.1002/jobm.201800508.
Soumare A, Boubekri K, Lyamlouli K, Hafidi M, Ouhdouch Y, Kousisni L. 2021. Efficacy of phosphate solubilizing Actinobacteria to improve rock phosphate agronomic effectiveness and plant growth promotion. Rhizosphere 17: 100284. DOI: 10.1016/j.rhisph.2020.100284.
Sreevidya M, Gopalakrishnan S, Kudapa H, Varshney R. 2016. Exploring plant growth-promotion Actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea. Braz J Microbiol 47: 85-95. DOI: 10.1016/j.bjm.2015.11.030.
Sukmadewi DKT, Suharjono, Antonius S. 2015. Uji potensi bakteri penghasil hormon IAA (Indole Acetic Acid) dari tanah rhizosfer cengkeh (Syzigium aromaticum L.). Jurnal Biotropika 3 (2):
-94.
Teo WVA, Muangham S, Lipun K, Duangmal K. 2021. Effect of rice seeds germination bioprimed with Actinomycetes isolated from peat swamp forest. Chiang Mai J Sci 48 (4): 996-1008.
Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A. 2016. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184: 13-24. DOI: 10.1016/j.micres.2015.12.003.
Wawo AH, Sumbogo VG, Lestari P. 2020. Comparison of seed germination and seedling growth between Indonesian local corn cultivars for deciding the quality of seed. Biodiversitas 21 (7): 3189-3199. DOI: 10.13057/biodiv/d210741.
Whitten T, Soeriaatmadja RE, Suraya AA. 1999. Ekologi Jawa dan Bali. Prenhallindo, Jakarta. [Indonesian]
Xu J, Zhou L, Venturi V, He YW, Kojima M, Sakakibari H, Höfte M, Vleesschauwer DD. 2015. Phytohormone?mediated interkingdom signaling shapes the outcome of rice?Xanthomonas oryzae pv. oryzae interactions. BMC Plant Biol 15: 10. DOI: 10.1186/s12870-014-0411-3.
Yadav AN, Verma P, Kumar S, Kumar V, Kumar M, Kumari STC. 2018. Actinobacteria from rhizosphere: Molecular diversity, distributions, and potential biotechnological applications. In: Singh BP, Gupta VK, Passari AK (eds). New And Future Developments In Microbial Biotechnology And Bioengineering. Elsevier, Amsterdam. DOI: 10.1016/C2016-0-03789-0.
Yun Y, Wang H, Man B, Xiang X, Zhou J, Qiu X, Engel AS. 2016. The relationship between pH and bacterial communities in a single karst ecosystem and its implication for soil acidification. Front Microbiol 7: 23-32. DOI: 10.3389/fmicb.2016.01955.
Zhou Z, Gao T, Yan T, Zhu Q, Li D, Xue J, Wu Y. 2019. Increases in bacterial community network complexity induced by biochar-based fertilizer amendments to karst calcareous soil. Geoderma 337: 691-700. DOI: 10.1016/j.geoderma.2018.10.013.

Most read articles by the same author(s)

1 2 > >>