Diversity of bioactive compounds from Parmotrema xanthinum as antimicrobial potential through in-vitro and in-silico assessment

##plugins.themes.bootstrap3.article.main##

OKY KUSUMA ATNI
ERMAN MUNIR
NURSAHARA PASARIBU

Abstract

Abstract. Atni OK, Munir E, Pasaribu N. 2024. Diversity of bioactive compounds from Parmotrema xanthinum as antimicrobial potential through in-vitro and in-silico assessment. Biodiversitas 25: 4438-4449. Lichens, integral to ecosystem diversity, are known for producing bioactive secondary metabolites with significant pharmacological applications, particularly in antimicrobial therapies. This study evaluates the antimicrobial potential of Parmotrema xanthinum through in vitro and in silico approaches, emphasizing its role in biodiversity and drug discovery. Methanol extracts of P. xanthinum were tested against Gram-negative and Gram-positive bacteria, as well as pathogenic yeast, using the disc diffusion method. The extracts exhibited notable antimicrobial activity, particularly against Escherichia coli (18.6 ± 0.44 mm) and Salmonella enterica serovar Typhi (15.8 ± 0.25 mm). Gas chromatography-mass spectrometry (GC-MS) analysis identified 29 bioactive compounds, evaluated for drug-likeness using Lipinski's rule of five and biological activity predictions. Molecular docking studies with penicillin-binding protein 3 (PBP3) of Pseudomonas aeruginosa (PDB ID: 6I1E) revealed strong binding affinities. Notably, benzenepropanoic acid, ?-(2,5-dioxopyrrolo)-, exhibited a binding energy of -5.9 kcal/mol, while 2,2,3,3-tetramethylcyclopropanoic acid, phenyl ester, showed -5.2 kcal/mol. These findings highlight P. xanthinum as a valuable source of bioactive compounds with potential for combating bacterial resistance. Further investigations into its bioactive mechanisms, pharmacodynamics, and safety profiles are recommended to advance its development as a viable candidate for antimicrobial drug discovery.

##plugins.themes.bootstrap3.article.details##

References
Alzayn M, Dulyayangkul P, Satapoomin N, Heesom KJ, Avison MB. 2021. Ompf downregulation mediated by sigma E or OmpR activation confers cefalexin resistance in Escherichia coli in the absence of acquired ?-lactamases. Antimicrob Agents Chemother 65 (11): 1110-1128. DOI: 10.1128/aac.01004-21.
Atni OK, Munir E, Siregar ES, Saleh M. 2024. Lichen diversity and taxonomy in Bukit Barisan Grand Forest Park, North Sumatra, Indonesia. Biodiversitas 25: 1623-1630. DOI: 10.13057/biodiv/d250431.
Badiali C, Petruccelli V, Brasili E, Pasqua G. 2023. Xanthones: Biosynthesis and trafficking in plants, fungi and lichens. Plants 12 (4): 694. DOI: 10.3390/plants12040694.
Bellini D, Koekemoer L, Newman H, Dowson CG. 2019. Novel and improved crystal structures of H. influenzae, E. coli and P. aeruginosa penicillin-binding protein 3 (PBP3) and N. gonorrhoeae PBP2: Toward a better understanding of ?-lactam target-mediated resistance. J Mol Biol 431 (18): 3501-3519. DOI: 10.1016/j.jmb.2019.07.010.
Chakarwarti J, Anand V, Nayaka S, Srivastava S. 2024. In vitro antibacterial activity and secondary metabolite profiling of endolichenic fungi isolated from genus Parmotrema. Curr Microbiol 81 (7): 195. DOI: 10.1007/s00284-024-03719-4.
Chen W, Zhang YM, Davies C. 2017. Penicillin-binding protein 3 is essential for growth of Pseudomonas aeruginosa. Antimicrob Agents Chemother 61 (1): 10-1128. DOI: 10.1128/aac.01651-16.
Choi U, Lee CR. 2019. Distinct roles of outer membrane porins in antibiotic resistance and membrane integrity in Escherichia coli. Front Microbiol 10: 953. DOI: 10.3389/fmicb.2019.00953.
Cunrath O, Meinel DM, Maturana P, Fanous J, Buyck JM, Saint Auguste P, Seth-Smith HMB, Körner J, Dehio C, Trebosc V, Kemmer C, Neher R, Egli A, Bumann D. 2019. Quantitative contribution of efflux to multi-drug resistance of clinical Escherichia coli and Pseudomonas aeruginosa strains. EBioMedicine 41: 479-487. DOI: 10.1016/j.ebiom.2019.02.061 2352-3964.
Dandapat M, Paul S. 2019. Secondary metabolites from lichen Usnea longissima and its pharmacological relevance. Pharmacogn Res 11 (2): 103-109. DOI: 10.4103/pr.pr_111_18.
Dwarakanath PR, Abinaya K, Nagasathya K, Meenakumari S, Gopinath SC, Raman P. 2022. Profiling secondary metabolites from lichen "Parmotrema perlatum (Huds.) M. Choisy" and antibacterial and antioxidant potentials. Biomass Convers Biorefin 14 (14): 16461-16471. DOI: 10.1007/s13399-022-03572-0.
Farrag HA, Abdallah N, Shehata MM, Awad EM. 2019. Natural outer membrane permeabilizers boost antibiotic action against irradiated resistant bacteria. J Biomed Sci 26: 96. DOI: 10.1186/s12929-019-0561-6.
Galindo-Méndez M. 2020. E. coli Infections-Importance of Early Diagnosis and Efficient Treatment. IntechOpen, London. DOI: 10.5772/intechopen.80139.
Goga M, Ele?ko J, Marcin?inová M, Ru?ová D, Ba?korová M, Ba?kor M. 2020. Lichen metabolites: An overview of some secondary metabolites and their biological potential. In: Mérillon JM, Ramawat K (eds). Co-evolution of secondary metabolites. Springer, New York. DOI: 10.1007/978-3-319-96397-6_57.
Gómez-Serranillos MP, Fernández-Moriano C, González-Burgos E, Divakar PK, Crespo A. 2014. Parmeliaceae family: Phytochemistry, pharmacological potential and phylogenetic features. Rsc Adv 4 (103): 59017-59047. DOI: 10.1039/c4ra09104c.
Ivanovi? V, Ran?i? M, Arsi? B, Pavlovi? A. 2020. Lipinski's rule of five, famous extensions and famous exceptions. Pop Sci Article 3 (1): 171-177. DOI: 10.46793/chemn3.1.171i.
Karami TK, Hailu S, Feng S, Graham R, Gukasyan HJ. 2022. Eyes on Lipinski's rule of five: A new "rule of thumb" for physicochemical design space of ophthalmic drugs. J Ocular Pharmacol Therapeut 38 (1): 43-55. DOI: 10.1089/jop.2021.0069.
Kello M, Goga M, Kotorova K, Sebova D, Frenak R, Tkacikova L, Mojzis J. 2023. Screening evaluation of antiproliferative, antimicrobial and antioxidant activity of lichen extracts and secondary metabolites in vitro. Plants 12 (3): 611. DOI: 10.3390/plants12030611.
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. 1997. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23 (1-3): 3-25. DOI: 10.1016/S0169-409X(96)00423-1.
Lücking R, Hodkinson BP, Leavitt SD. 2017. The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota-Approaching one thousand genera. J Bryol 119 (4): 361-416. DOI: 10.1639/0007-2745-119.4.361.
Macedo DCS, Almeida FJF, Wanderley MSO, Ferraz MS, Santos NPS, López AMQ, Lira-Nogueira MCB, 2021. Usnic acid: From an ancient lichen derivative to promising biological and nanotechnology applications. Phytochem Rev 20: 609-630. DOI: 10.1007/s11101-020-09717-1.
Maulidiyah M, Darmawan A, Usman U, Musdalifah A, Ode L, Salim A, Nurdin M, 2021. Antioxidant activity of secondary metabolite compounds from lichen Teloschistes flavicans. Biointerface Res Appl Chem 11: 13878-13884. DOI: 10.1088/1742-6596/1763/1/012068.
Mendili M, Khadhri A, Mediouni?Ben Jemâa J, Andolfi A, Tufano I, Aschi?Smiti S, DellaGreca M, 2022. Anti?inflammatory potential of compounds isolated from Tunisian lichens species. Chem Biodiver 19 (8): e202200134. DOI: 10.1002/cbdv.202200134.
Millot M, Dieu A, Tomasi S, 2016. Dibenzofurans and derivatives from lichens and ascomycetes. Nat Prod Rep 33 (6): 801-811. DOI: 10.1039/c5np00134j.
Nguyen TTS, Yoon Y, Yang HB, Lee S, Oh MH, Jeong JJ, Kim ST, Yee F, Crisan C, Moon KY, Lee KK, Kim JS, Hur, H Kim. 2014. Lichen secondary metabolites in Flavocetraria cucullata exhibit anti-cancer effects on human cancer cells through the induction of apoptosis and suppression of tumorigenic potentials. PLoS One 9 (10): e111575. DOI: 10.1371/journal.pone.0111575.
Ozturk S, Erkisa M, Oran S, Ulukaya E, Celikler S, Ari F, 2021. Lichens exerts an antiproliferative effect on human breast and lung cancer cells through induction of apoptosis. Drug Chem Toxicol 44 (3): 259-267. DOI: 10.1080/01480545.2019.1573825.
Prajapati JD, Kleinekatho?fer U, Winterhalter M. 2021. How to enter a bacterium: Bacterial porins and the permeation of antibiotics. Chem Rev 121 (9): 5158-5192. DOI: 10.1021/acs.chemrev.0c01213.
Rankovi? B, Kosani? M. 2019. Lichens as a potential source of bioactive secondary metabolites. In: Rankovi? B (eds). Lichen secondary metabolites: Bioactive properties and pharmaceutical potential. Springer, New York. DOI: 10.1007/978-3-030-16814-8_1.
Rankovi? B, Kosani? M. 2021. Biotechnological substances in lichens. In: Sinha RP, Häder D-P (eds). Natural Bioactive Compounds Technological Advancements. Academic Press, Cambridge. DOI: 10.1016/B978-0-12-820655-3.00012-4.
Saha S, Pal A, Paul S. 2021. A review on pharmacological, antioxidant activities and phytochemical constituents of a novel lichen Parmotrema species. J Biol Active Prod Nat 11 (3): 190-203. DOI: 10.1080/22311866.2021.1916596.
Shiromi PSAI, Hewawasam RP, Jayalal RGU, Rathnayake H, Wijayaratne WMDGB, Wanniarachchi D. 2021. Chemical composition and antimicrobial activity of two Sri Lankan lichens, Parmotrema rampoddense, and Parmotrema tinctorum against methicillin?sensitive and methicillin?resistant Staphylococcus aureus. Evid Based Complement Alternat Med 2021: 9985325. DOI: 10.1155/2021/9985325.
Smith JL, Fratamico PM, Gunther IV NW. 2014. Shiga toxin-producing Escherichia coli. Adv Appl Microbiol 86: 145-197. DOI: 10.1016/B978-0-12-800262-9.00003-2.
Tatipamula VB, Tatipamula VK, 2021. Dibenzofurans from Cladonia corniculata Ahti and Kashiw inhibit key enzymes involved in inflammation and gout: An in vitro approach. Indian J Chem Sect B 60: 715-719. DOI: 10.56042/ijcb. v60i5. 38966.
Thakur R, Suri CR, Rishi P. 2022. Contribution of typhoid toxin in the pathogenesis of Salmonella Typhi. Microb Pathog 164: 105444. DOI: 10.1016/j.micpath.2022.105444.
Tuan NT, Dam NP, Van Hieu M, Trang DTX, Danh LT, Men TT, De TQ, Bach LT, Kanaori K. 2020. Chemical constituents of the lichen Parmotrema tinctorum and their antifungal activity. Chem Nat Compd 56: 315-317. DOI: 10.1007/s10600-020-03017-y.
Ureña-Vacas I, Burgos EG, Divakar PK, Gómez-Serranillos MP. 2021. Dibenzofurans from lichens-a pharmacological overview. Curr Top Med Chem 21: 2397-2408. DOI: 10.2174/1568026621666210728095214.
Weerakoon G, Aptroot A. 2014. Over 200 new lichen records from Sri Lanka, with three new species to science. Cryptogamie Mycologie 35 (1): 51-62. DOI: 10.7872/crym.v35.iss1.2014.51.
Zermeño-Cervantes LA, Martínez-Díaz SF, Venancio-Landeros AA, Cardona-Félix CS. 2023. Evaluating the efficacy of endolysins and membrane permeabilizers against Vibrio parahaemolyticus in marine conditions. Res Microbiol 174 (7): 104104. DOI: 10.1016/j.resmic.2023.104104.

Most read articles by the same author(s)

1 2 > >>