Metabolite profiles and biomarkers of three Selaginella (Selaginellaceae) medicinal plant species in Java Island, Indonesia

##plugins.themes.bootstrap3.article.main##

AMANDA KHOIRUNISA
TATIK CHIKMAWATI
GIRI NUGROHO
MIFTAHUDIN

Abstract

Abstract. Khoirunisa A, Chikmawati T, Nugroho G, Miftahudin. 2025. Metabolite profiles and biomarkers of three Selaginella (Selaginellaceae) medicinal plant species in Java Island, Indonesia. Biodiversitas 26: 434-443. Metabolite content in plants is an important taxonomic marker that facilitates the realistic delimitation of species. Substantial improvement is needed for the metabolomic data of several fern species, including Selaginella, which is widely used as a medicinal plant on Java Island. Therefore, this research aimed to profile metabolite compounds in Selaginella ornata, S. plana, and S. willdenowii, and identify biomarkers for species differentiation. Metabolite content and data were determined with Liquid Chromatography-Mass Spectrometry (LC-MS) and MZmine 3.1.0 beta software, respectively. Meanwhile, metabolite profiling, heatmap clusters, and cluster analysis were carried out using MetaboAnalyst 5.0. A total of 113 metabolites were detected in three Selaginella species observed. Based on metabolite characteristics, cluster analysis categorized all individuals into three groups, showing that individuals from the same species were more similar than others, with S. ornata metabolites appearing more similar to S. willdenowii than to S. plana. Three species had similarities in the compounds 1,3,5-benzenetricarbonitrile, 2-hydroxyisocaproic acid, 3-furoic acid, 3-methyl-2-oxovaleric acid, amentoflavone, avobenzone, ibuprofen, kojic acid, and skyrin. Metabolites only possessed by each species of S. plana, S. ornata, and S. willdenowii included 4-vinylphenol, velutin, and axahine B, respectively. This research reported for the first time several low-weight secondary metabolites with potential application as biomarkers to differentiate three species.

##plugins.themes.bootstrap3.article.details##

References
Ahmed OM, Mahmoud AM, Abdel-Moneim A, Ashour MB. 2012. Antidiabetic effects of hesperidin and naringin in type 2 diabetic rats. Diabetol Croat 41 (2): 53-67.
Arbona V, Iglesias DJ, Gómez-Cadenas A. 2015. Non-targeted metabolite profiling of Citrus juices as a tool for variety discrimination and metabolite flow analysis. BMC Plant Biol 15: 38. DOI: 10.1186/s12870-015-0430-8.
Calixto JB. 2019. The role of natural products in modern drug discovery. An Acad Bras Cienc 91 Suppl 3: e20190105. DOI: 10.1590/0001-3765201920190105.
Chikmawati T, Setyawan AD, Miftahudin. 2012. Phytochemical composition of Selaginella spp. from Jawa Island. Makara J Sci 16 (2): 129-133. DOI: 10.7454/mss.v16i2.1408.
Chikmawati T, Wijayanto A, Miftahudin. 2009. Potensi Selaginella sebagai antioksidan. In: Muchtaromah B, Irawan B, Minarno EB, Romaidi, Suheriyanto D, Suyono, Ismail M (eds). Peran Biologi dalam Penyelamatan Biodiversitas Indonesia; Prosiding Seminar Nasional Biologi XX dan Konggres Perhimpunan Biologi Indonesia XIV. Universitas Islam Negeri Malang, Malang, 24-25 Juli 2009. [Indonesian]
Choudhary S, Li W, Bickhart D, Verma R, Sethi RS, Mukhopadhyay CS, Choudhary RK. 2018. Examination of the xanthosine response on gene expression of mammary epithelial cells using RNA-seq technology. J Anim Sci Technol 60: 18. DOI: 10.1186/s40781-018-0177-5.
Cook SD. 2019. An historical review of phenylacetic acid. Plant Cell Physiol 60 (2): 243-254. DOI: 10.1093/pcp/pcz004.
de M. Castro M, Demarco D. 2008. Phenolic compounds produced by secretory structures in plants: A brief review. Nat Prod Commun 3 (8): 1273-1284. DOI: 10.1177/1934578X0800300809.
Elfahmi E, Woerdenbag HJ, Kayser O. 2014. Jamu: Indonesian traditional herbal medicine towards rational phytopharmacological use. J Herb Med 4 (2): 51-73. DOI: 10.1016/j.hermed.2014.01.002.
Freitas JA, Ccana-Ccapatinta GV, Da Costa FB. 2021. LC-MS metabolic profiling comparison of domesticated crops and wild edible species from the family Asteraceae growing in a region of São Paulo state, Brazil. Phytochem Lett 42: 45-51. DOI: 10.1016/j.phytol.2021.02.004.
Gayathri V, Asha VV, Subramoniam A. 2005. Preliminary studies on the immunomodulatory and antioxidant properties of Selaginella species. Indian J Pharmacol 37 (6): 381-386. DOI: 10.4103/0253-7613.19075.
Guan S, Sun L, Wang X, Huang X, Luo T. 2022. Isoschaftoside inhibits Lipopolysaccharide-induced inflammation in Microglia through regulation of HIF-1?-mediated metabolic reprogramming. Evid Based Compl Alternat Med 2022: 5227335. DOI: 10.1155/2022/5227335.
Gul W, Hamann MT. 2005. Indole alkaloid marine natural products: An established source of cancer drug leads with considerable promise for the control of parasitic, neurological and other diseases. Life Sci 78 (5): 442-453. DOI: 10.1016/j.lfs.2005.09.007.
He Y, Wu M, Liu Y, Li Q, Li X, Hu L, Cen S, Zhou J. 2016. Identification of triptophenolide from Tripterygium wilfordii as a Pan-antagonist of androgen receptor. ACS Med Chem Lett 7 (12): 1024-1027. DOI: 10.1021/acsmedchemlett.6b00180.
Höcker O, Flottmann D, Schmidt TC, Neusüß C. 2021. Non-targeted LC-MS and CE-MS for biomarker discovery in bioreactors: Influence of separation, mass spectrometry and data processing tools. Sci Total Environ 798: 149012. DOI: 10.1016/j.scitotenv.2021.149012.
Hole?ek M. 2023. Aspartic acid in health and disease. Nutrients 15 (18): 4023. DOI: 10.3390/nu15184023.
Jaworska M, Sikora E, Ogonowski J, Konieczna M. 2015. Study of O/W micro- and nano-emulsions based on propylene glycol diester as a vehicle for geranic acid. Acta Biochim Pol 62 (2): 229-233. DOI: 10.18388/abp.2014_926.
Kim H-J, Son DC, Kim H-J, Choi K, Oh S-H, Kang S-H. 2017. The chemotaxonomic classification of Korean campanulaceae based on triterpene, sterol and polyacetylene contents. Biochem Syst Ecol 74: 11-18. DOI: 10.1016/j.bse.2017.07.002.
Kim K, Kim J, Kim H, Sung GY. 2021. Effect of ?-Lipoic acid on the development of human skin equivalents using a pumpless skin-on-a-chip model. Intl J Mol Sci 22 (4): 2160. DOI: 10.3390/ijms22042160.
Kwan HY, Fu X, Liu B, Chao X, Chan CL, Cao H, Su T, Tse AKW, Fong WF, Yu Z-L. 2014. Subcutaneous adipocytes promote melanoma cell growth by activating signaling pathway: Role of palmitic acid. J Biol Chem 289 (44): 30525-30537. DOI: 10.1074/jbc.M114.593210.
Lee S, Kim H, Kang J-W, Kim J-H, Lee DH, Kim M-S, Yang Y, Woo E-R, Kim YM, Hong J, Yoon D-Y. 2011. The biflavonoid amentoflavone induces apoptosis via suppressing E7 expression, cell cycle arrest at Sub-G1 phase, and mitochondria-emanated intrinsic pathways in human cervical cancer cells. J Med Food 14 (7-8): 808-816. DOI: 10.1089/jmf.2010.1428.
Lei S, Rossi S, Huang B. 2022. Metabolic and physiological regulation of aspartic acid-mediated enhancement of heat stress tolerance in perennial ryegrass. Plants 11 (2): 199. DOI: 10.3390/plants11020199.
Leung H-W, Ko C-H, Yue GG-L, Herr I, Lau CB-S. 2018. The natural agent 4-vinylphenol targets metastasis and stemness features in breast cancer stem-like cells. Cancer Chemother Pharmacol 82 (2): 185-197. DOI: 10.1007/s00280-018-3601-0.
Li C, Yu M, Li S, Yang X, Qiao B, Shi S, Zhao C, Fu Y. 2021. Valorization of fig (Ficus carica L.) waste leaves: HPLC-QTOF-MS/MS-DPPH system for online screening and identification of antioxidant compounds. Plants 20 (11): 2532. DOI: 10.3390/plants10112532.
Lim DY, Shin SH, Lee M-H, Malakhova M, Kurinov I, Wu Q, Xu J, Jiang Y, Dong Z, Liu K, Lee KY, Bae KB, Choi BY, Deng Y, Bode A, Dong Z. 2016. A natural small molecule, catechol, induces c-Myc degradation by directly targeting ERK2 in lung cancer. Oncotarget 7 (23): 35001-35014. DOI: 10.18632/oncotarget.9223.
Liu K, Abdullah AA, Huang M, Nishioka T, Altaf-Ul-Amin M, Kanaya S. 2017. Novel approach to classify plants based on metabolite-content similarity. BioMed Res Intl 2017: 5296729. DOI: 10.1155/2017/5296729.
Liu Z, Liu Y, Liu C, Song Z, Li Q, Zha Q, Lu C, Wang C, Ning Z, Zhang Y, Tian C, Lu A. 2013. The chemotaxonomic classification of Rhodiola plants and its correlation with morphological characteristics and genetic taxonomy. Chem Cent J 7: 118. DOI: 10.1186/1752-153X-7-118.
Ma K, Kou J, Rahman MKU, Du W, Liang X, Wu F, Li W, Pan K. 2021. Palmitic acid mediated change of rhizosphere and alleviation of Fusarium wilt disease in watermelon. Saudi J Biol Sci 28 (6): 3613-3623. DOI: 10.1016/j.sjbs.2021.03.040.
Matsuura HN, Fett-Neto AG. 2015. Plant Alkaloids: Main Features, Toxicity, and Mechanisms of Action. In: Gopalakrishnakone P, Carlini C, Ligabue-Braun R (eds). Plant Toxins. Toxinology. Springer, Dordrecht. DOI: 10.1007/978-94-007-6728-7_2-1.
McEvoy GK. 2014. Ergonovine maleate, Methylergonovine maleatae. AHFS Drug Inform 2014: 3348-3349.
Miftahudin, Hasibuan RS, Chikmawati T. 2019. Antioxidant activity of ethanolic extract of three Selaginella species from Java Island, Indonesia. Biodiversitas 20: 3715-3722. DOI: 10.13057/biodiv/d201234.
Mwale M, Masika PJ. 2010. Analgesic and anti-inflammatory activities of Aloe ferox Mill. aqueous extract. Afr J Pharm Pharmacol 4: 291-297.
Nakao Y, Yeung BKS, Yoshida WY, Scheuer PJ, Kelly-Borges M. 1995. Kapakahine B, a cyclic hexapeptide with an alpha-carboline ring system from the marine sponge Cribrochalina olemda. J Am Chem Soc 117 (31): 8271-8272. DOI: 10.1021/ja00136a026.
Nimesh S, Ashwlayan VD, Rani R, Prakash O. 2020. Advantages of herbal over allopathic medicine in the management of kidney and urinary stones disease. Borneo J Pharm 3 (3): 179-189. DOI: 10.33084/bjop.v3i3.1415.
Pang Z, Chong J, Zhou G, de Lima Morais DA, Chang L, Barrette M, Gauthier C, Jacques P-É, Li S, Xia J. 2021. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res 49 (W1): W388-W396. DOI: 10.1093/nar/gkab382.
Parthasarathy A, Borrego EJ, Savka MA, Dobson RCJ, Hudson AO. 2021. Amino acid derived defense metabolites from plants: A potential source to facilitate novel antimicrobial development. J Biol Chem 296: 100438. DOI: 10.1016/j.jbc.2021.100438.
Peng S, Hu C, Liu X, Lei L, He G, Xiong C, Wu W. 2020. Rhoifolin regulates oxidative stress and proinflammatory cytokine levels in Freund’s adjuvant-induced rheumatoid arthritis via inhibition of NF-kB. Braz J Med Biol Res 53 (6): e9489. DOI: 10.1590/1414-431x20209489.
Peng Z, Zhang H, Li W, Yuan Z, Xie Z, Zhang H, Cheng Y, Chen J, Xu J. 2021. Comparative profiling and natural variation of polymethoxylated flavones in various citrus germplasms. Food Chem 354: 129499. DOI: 10.1016/j.foodchem.2021.129499.
Peters K, Blatt-Janmaat KL, Tkach N, van Dam NM, Neumann S. 2023. Untargeted metabolomics for integrative taxonomy: Metabolomics, DNA marker-based sequencing, and phenotype bioimaging. Plants 12 (4): 881. DOI: 10.3390/plants12040881.
Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, Raven PH, Roberts CM, Sexton JO. 2014. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344 (6187): 1246752. DOI: 10.1126/science.1246752.
Quiros-Guerrero L-M, Allard P-M, Nothias L-F, David B, Grondin A, Wolfender J-L. 2024. Comprehensive mass spectrometric metabolomic profling of a chemically diverse collection of plants of the Celastraceae family. Sci Data 11 (1): 415. DOI: 10.1038/s41597-024-03094-6.
Refaat J, Desoukey SY, Ramadan MA, Kamel MS. 2015. Rhoifolin: A review of sources and biological activities. Intl J Pharmacogn 2 (3): 102-109. DOI: 10.13040/IJPSR.0975-8232.IJP.2(3).102-09.
Rocha S, Ferraz R, Prudêncio C, Fernandes MH, Costa-Rodrigues J. 2019. Differential effects of antiepileptic drugs on human bone cells. J Cell Physiol 234 (11): 19691-19701. DOI: 10.1002/jcp.28569.
Salem MA, de Souza LP, Serag A, Fernie AR, Farag MA, Ezzat SM, Alseekh S. 2020. Metabolomics in the context of plant natural products research: From sample preparation to metabolite analysis. Metabolites 10 (1): 37. DOI: 10.3390/metabo10010037.
Salmerón-Manzano E, Garrido-Cardenas JA, Manzano-Agugliaro F. 2020. Worldwide research trends on medicinal plants. Intl J Environ Res Public Health 17 (10): 3376. DOI: 10.3390/ijerph17103376.
Schenck CA, Maeda HA. 2018. Tyrosine biosynthesis, metabolism, and catabolism in plants. Phytochemistry 149: 82-102. DOI: 10.1016/j.phytochem.2018.02.003.
Schmid R, Heuckeroth S, Korf A et al. 2023. Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat Biotechnol 41 (4): 447-449. DOI: 10.1038/s41587-023-01690-2.
Sergeant S, Rahbar E, Chilton FH. 2016. Gamma-linolenic acid, dihommo-gamma linolenic, eicosanoids and inflammatory processes. Eur J Pharmacol 785: 77-86. DOI: 10.1016/j.ejphar.2016.04.020.
Shao S-Y, Ting Y, Wang J, Sun J, Guo X-F. 2019. Characterization and identification of the major flavonoids in Phyllostachys edulis leaf extract by UPLC-QTOF-MS/MS. Acta Chromatogr 32 (4): 1-10. DOI: 10.1556/1326.2019.00688.
Shen S, Zhan C, Yang C, Fernie AR, Luo J. 2023. Metabolomics-centered mining of plant metabolic diversity and function: Past decade and future perspectives. Mol Plant 16 (1): 43-63. DOI: 10.1016/j.molp.2022.09.007.
Shumon N, Ashrafuzzaman M. 2023. Selaginella willdenowii (Desv.) Baker (Selaginellaceae) first record from Sitakundo Ecopark, Chattogram, for the vascular plant of Bangladesh. Species 24 (74): e83s1594. DOI: 10.54905/disssi.v24i74.e83s1594.
Silva GL, Chai H, Gupta MP, Farnsworth NR, Cordell GA, Pezzuto JM, Beecher CW, Kinghorn AD. 1995. Cytotoxic biflavonoids from Selaginella willdenowii. Phytochemistry 40 (1): 129-134. DOI: 10.1016/0031-9422(95)00212-p.
Singh R. 2016. Chemotaxonomy: A tool for plant classification. J Med Plant Stud 4 (2): 90-93.
Susilo S, Wardhani RK. 2023. Phytoconstituents profiling of Selaginella willdenowii (Desv.) Baker and pharmacological potential. Res J Pharm Technol 16 (12): 5978-5. DOI: 10.52711/0974-360X.2023.00970.
Tangkiatkumjai M, Boardman H, Walker D-M. 2020. Potential factors that influence usage of complementary and alternative medicine worldwide: A systematic review. BMC Compl Med Ther 20 (1): 363. DOI: 10.1186/s12906-020-03157-2.
Taofiq O, González-Paramás AM, Barreiro MF, Ferreira ICFR. 2017. Hydroxycinnamic acids and their derivatives: Cosmeceutical significance, challenges and future perspectives, a review. Molecules 22 (2): 281. DOI: 10.3390/molecules22020281.
Tholl D. 2015. Biosynthesis and biological functions of terpenoids in plants. Adv Biochem Eng Biotechnol 148: 63-106. DOI: 10.1007/10_2014_295.
Valdespino IA, Heringer G, Salino A, de Araújo Góes-Neto LA, Ceballos J. 2015. Seven new species of Selaginella subg. Stachygynandrum (Selaginellaceae) from Brazil and new synonyms for the genus. PhytoKeys 50: 61-99. DOI: 10.3897/phytokeys.50.4873.
Van Dam NM, Bouwmeester HJ. 2016. Metabolomics in the rhizosphere: Tapping into belowground chemical communication. Trends Plant Sci 21 (3): 256-265. DOI: 10.1016/j.tplants.2016.01.008.
Wang M, Schoettner M, Xu S, Paetz C, Wilde J, Baldwin IT, Groten K. 2016. Catechol, a major component of smoke, influences primary root growth and root hair elongation through reactive oxygene species-mediated redox signaling. New Phytol 213 (4): 1755-1770. DOI: 10.1111/nph.14317.
Warella JC, Rahma K, Widodo ADW, Setiabudi RJ. 2023. Antifungal activity of Selaginella plana (Desv. ex Poir.) Hieron extract against Candida albicans in vitro. Folia Med Indones 59 (3): 295-301. DOI: 10.20473/fmi.v59i3.44165.
Weststrand S, Korall P. 2016. Phylogeny of Selaginellaceae: There is value in morphology after all!. Am J Bot 103 (12): 2136-2159. DOI: 10.3732/ajb.1600156.
Wijayanto A. 2014. Keanekaragaman dan penyebaran Selaginella spp. di Indonesia dari tahun 1998-2014. El-Hayah 5 (1): 31-42. DOI: 10.18860/elha.v5i1.3038. [Indonesian]
Wu DC, Goldman MP. 2017. A topical anti-inflammatory healing regimen utilizing conjugated Linolenic acid for use post-ablative laser resurfacing of the face: A randomized, controlled trial. J Clin Aesthet Dermatol 10 (10): 12-17.
Wu S, Zhu G, Zhou D, Xu H, Zhao L. 2021. Application value of UPLC-MS/MS in detecting serum concentration of anti-schizophrenic drugs in patients with mental illnes. Am J Transl Res 13 (5): 5460-5467.
Wuolikainen A, Jonsson P, Ahnlund M, Antti H, Marklund SL, Moritz T, Forsgren L, Andersen PM, Trupp M. 2016. Multi platform mass spectrometry analysis of the CSF and plasma metabolomes of rigorously matched amyotrophic lateral sclerosis, Parkinson’s disease and control subjects. Mol Biosyst 12 (4): 1287-1298. DOI: 10.1039/C5MB00711A.
Zhou X-M, Rothfels CJ, Zhang L, He Z-R, Le Péchon T, He H, Lu NT, Knapp R, Lorence D, He X-J, Gao X-F, Zhang L-B. 2016. A large-scale phylogeny of the lycophyte genus Selaginella (Selaginellaceae: Lycopodiopsida) based on plastid and nuclear loci. Cladistics 32 (4): 360-389. DOI: 10.1111/cla.12136.
Zhou X-M, Zhang L-B. 2015. A classification of Selaginella (Selaginellaceae) based on molecular (chloroplast and nuclear), macromorphological, and spore features. Taxon 64 (6): 1117-1140. DOI: 10.12705/646.2.

Most read articles by the same author(s)

<< < 1 2 3 > >>