Detection of microplastics in honey of stingless bee (Heterotrigona itama) and honey bee (Apis mellifera) from Malaysia

##plugins.themes.bootstrap3.article.main##

YUSOF SHUAIB IBRAHIM
MUHAMMAD NAIM ROSAZAN
MUHAMMAD IZZELEN IZZAUDDIN MAMAT
SABIQAH TUAN ANUAR
WAHIZATUL AFZAN AZMI

Abstract

Abstract. Ibrahim YS, Rosazan MN, Mamat MII, Anuar ST, Azmi WA. 2025. Detection of microplastics in honey of stingless bee (Heterotrigona itama) and honey bee (Apis mellifera) from Malaysia. Biodiversitas 26: 1271-1278. The demand for stingless bee honey and European bee honey has increased rapidly due to its medicinal benefits. Honey of the Indo-Malaya stingless bee, Heterotrigona itama, and European honey bee, Apis mellifera, are among the most popular bee products that Malaysians commonly consume. It has been reported that the contamination of honey with microplastics (MPs) can occur at various stages of production, from bees collecting the contaminated floral sources to the harvesting and packaging processes. With the emerging plastics pollution in the environment and concerns about potential health risks, this study aims to investigate the presence of MPs in honey samples from stingless bees, H. itama, and honey bees, A. mellifera, from Malaysia. Microplastic particles were extracted from 10 g of honey and characterized under a stereomicroscope to determine their color, size, and type. Polymer types were further identified using FTIR analysis. All honey samples from both species were found to be 100% contaminated with microplastics. H. itama honey contained a higher concentration of microplastics (8.18 ± 2.57 MPs/g) compared to A. mellifera's honey (5.52 ± 1.13 MPs/g). The MPs found in honey from both species were predominantly fibers and fragments, mostly transparent in color, with sizes ranging from 0.7 to 1.8 mm. The findings of this preliminary study are intended to provide an awareness of MPs in honey, especially in the food safety aspect, which needs a better understanding of good practices of beekeeping and processing procedures to minimize the contamination of honey.

##plugins.themes.bootstrap3.article.details##

References
Abou-Shaara HF. 2014. The foraging behavior of honey bees, Apis mellifera: A review. Vet Med 59 (1): 1-10. DOI: 10.17221/7240-VETMED.
Al Naggar Y, Brinkmann M, Sayes CM, AL-Kahtani SN, Dar SA, El-Seedi HR, Grünewald B, Giesy JP. 2021. Are honey bees at risk from microplastics?. Toxics 9 (5): 109. DOI: 10.3390/toxics9050109.
Alma AM, de Groot GS, Buteler M. 2023. Microplastics incorporated by honeybees from food are transferred to honey, wax, and larvae. Environ Pollut 320: 121078. DOI: 10.1016/j.envpol.2023.121078.
Ali N, Khan MH, Ali M, Ahmad S, Khan A, Nabi G, Ali F, Bououdina M, Kyzas GZ. 2023. Insight into microplastics in the aquatic ecosystem: Properties, sources, threats and mitigation strategies. Sci Total Environ 913: 169489. DOI: 10.1016/j.scitotenv.2023.169489.
Anuar ST, Abdullah NS, Yahya NKEM, Chin TT, Yusof KMKK, Mohamad Y, Azmi A, Jaafar M, Mohamad N, Khalik WMAWM, Ibrahim YS. 2023. A multidimensional approach for microplastics monitoring in two major tropical river basins, Malaysia. Environ Res 227: 115717. DOI: 10.1016/j.envres.2023.115717.
Azmi WA, Wan Sembok WZ, Yusuf N, Mohd Hatta MF, Salleh AF, Hamzah MAH, Ramli SN. 2019. Effects of pollination by the Indo-Malaya stingless bee (Hymenoptera: Apidae) on the quality of greenhouse-produced rockmelon. J Econ Entomol 112 (1): 20-24. DOI: 10.1093/jee/toy290.
Baez-Gonzalez AD, Royo-Marquez MH, Perez-Quintana CA, Hernández-Bernal AI, Melgoza-Castillo A, Titulaer M, Vega-Mares JH. 2024. Influence of distance, environmental factors, and native vegetation on honeybee (Apis mellifera) foraging in arid shrublands and grasslands. Insects 15 (7): 543. DOI: 10.3390/insects15070543.
Benedick S, Gansau JA, Ahmad AH. 2021. Foraging behaviour of Heterotrigona itama (Apidae: Meliponini) in residential areas. Pertanika: J Trop Agric Sci 44 (2): 485-502. DOI: 10.47836/pjtas.44.2.13.
Cabernard L, Roscher L, Lorenz C, Gerdts G, Primpke S. 2018. Comparison of raman and fourier transform infrared spectroscopy for the quanti?cation of microplastics in the aquatic environment. Environ Sci Technol 52 (22): 13279-13288. DOI: 10.1021/acs.est.8b03438.
Cai L, Wang J, Peng J, Tan Z, Zhan Z, Tan X, Chen Q. 2017. Characteristic of microplastics in the atmospheric fallout from Dongguan city, China: Preliminary research and first evidence. Environ Sci Pollut Res 24: 24928-24935. DOI: 10.1007/s11356-017-0116-x.
Chen G, Li Y, Wang J. 2021. Occurrence and ecological impact of microplastics in aquaculture ecosystems. Chemosphere 274: 129989. DOI: 10.1016/j.chemosphere.2021.129989.
Dees JP, Ateia M, Sanchez DL. 2020. Microplastics and their degradation products in surface waters: A missing piece of the global carbon cycle puzzle. ACS ES&T Water 1 (2): 214-216. DOI: 10.1021/acsestwater.0c00205.
Diaz-Basantes MF, Conesa JA, Fullana A. 2020. Microplastics in honey, beer, milk, and refreshments in Ecuador as emerging contaminants. Sustainability 12 (14): 5514. DOI: 10.3390/su12145514.
Edo C, Fernández-Alba AR, Vejsnæs F, van der Steen JJM, Fernández-Piñas F, Rosal R. 2021. Honeybees as active samplers for microplastics. Sci Total Environ 767: 144481. DOI: 10.1016/j.scitotenv.2020.144481.
EFSA [European Food Safety Authority]. 2016. Panel on contaminants on the food chain. Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA J 14: e04501. DOI: 10.2903/j.efsa.2016.4501.
Furfaro G, D’Elia M, Mariano S, Trainito E, Solca M, Piraino S, Belmonte G. 2022. SEM/EDX analysis of stomach contents of a sea slug snacking on a polluted seafloor reveal microplastics as a component of its diet. Sc Rep 12: 10244. DOI: 10.1038/s41598-022-14299-3.
Gavigan J, Kefela T, Macadam-Somer I, Suh S, Geyer R. 2020. Synthetic microfiber emissions to land rival those to waterbodies and are growing. PLoS One 15: e0237839. DOI: 10.1371/journal.pone.0237839.
Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M. 2012. Microplastics in the marine environment: A review of the method used for identification and quantification. Environ Sci Technol 46 (6): 3060-3075. DOI: 10.1021/es2031505.
Jin M, Wang X, Ren T, Wang J, Shan J. 2021. Microplastics contamination in food and beverages: Direct exposure to humans. J Food Sci 86: 2816-2837. DOI: 10.1111/1750-3841.15802.
Jung MR, Horgen FD, Orski SV, Rodriguez CV, Beers KL, Balazs GH, Jones TT, Work TM, Brignac KC, Royer SJ, Hyrenbach KD, Jensen BA, Lynch JM. 2018. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Mar Pollut Bull 127: 704-716. DOI: 10.1016/j.marpolbul.2017.12.061.
Katsara K, Kenanakis G, Alissandrakis E, Papadakis VM. 2022. Honey quality and microplastic migration from food packaging: A potential threat for consumer health?. Microplastics 1 (3): 406-427. DOI: 10.3390/microplastics1030030.
Koelmans AA, Mohamed Nor NH, Hermsen E, Kooi M, Mintenig SM, De France J. 2019. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Res 155: 410-422. DOI: 10.1016/j.watres.2019.02.054.
Lee H, Kunz A, Shim WJ, Walther BA. 2019. Microplastic contamination of table salts from Taiwan, including a global review. Sci Rep 9: 10145. DOI: 10.1038/s41598-019-46417-z.
Li D, Shi Y, Yang L, Xiao L, Kehoe DK, Gun’ko YK, Boland JJ, Wang JJ. 2020. Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation. Nat Food 1: 746-754. DOI: 10.1038/s43016-020-00171-y.
Le LT, Nguyen KQN, Nguyen PT, Duong HC, Bui XT, Hoang NB, Nghiem LD. 2022. Microfibers in laundry wastewater: Problem and solution. Sci Total Environ 852: 158412. DOI: 10.1016/j.scitotenv.2022.158412 .
Liebezeit G, Liebezeit E. 2013. Non-pollen particulates in honey and sugar. Food Addit Contam Part A 30 (12): 2136-2140. DOI: 10.1080/19440049.2013.843025.
Liebezeit G, Liebezeit E. 2014. Synthetic particles as contaminants in German beers. Food Addit Contam Part A 31 (9): 1574-1578. DOI: 10.1080/19440049.2014.945099.
Liebezeit G, Liebezeit E. 2015. Origin of synthetic particles in honeys. Polish J Food Nutr Sci 65 (2): 143-147. DOI: 10.1515/pjfns-2015-0025
Lyu K, Yu B, Li D, Gu L, Yang Z. 2022. Increased food availability reducing the harmful effects of microplastics strongly depends on the size of microplastics. J Hazard Mater 437: 129375. DOI: 10.1016/j.jhazmat.2022.129375.
Mason SA, Welch V, Neratko J. 2018. Synthetic polymer contamination in bottled water. Front Chem 6: 407. DOI: 10.3389/fchem.2018.00407.
Mamat MII, Khamis S, Fuaad MFL, Mohamed NZ, Omar CM, Abdullah, DM, Azmi, WA. 2023. Pollen sources foraged by domesticated stingless bee (Heterotrigona itama) reared in Gelam Forests of Terengganu, Malaysia. Serangga 28 (2): 120-138.
Periyasamy AP, Tehrani-Bagha A. 2022. A review on microplastic emission from textile materials and its reduction techniques. Polym Degrad Stab 199: 109901. DOI: 10.1016/j.polymdegradstab.2022.109901.
Oßmann BE, Sarau G, Holtmannspötter H, Pischetsrieder M, Christiansen SH, Dicke W. 2018. Small-sized microplastics and pigmented particles in bottled mineral water. Water Res 141: 307-316. DOI: 10.1016/j.watres.2018.05.027.
Oliveira M, Olga MCCA, Amadeu MVMS. 2019. Are ecosystem services provided by insects "bugged" by micro (nano)plastics?. TrAC Trends Anal Chem 113: 317-320. DOI: 10.1016/j.trac.2019.02.018.
OriginPro. 2022. Version 2022. OriginLab Corporation, Northampton, MA, USA. http://www.originlab.com
Ouyang X, Duarte CM, Cheung S, Tam NF, Cannicci S, Martin C, Lo HS, Lee SY. 2022. Fate and effects of macro- and microplastics in coastal wetlands. Environ Sci Technol 56: 2386-2397. DOI: 10.1021/acs.est.1c06732.
Rainieri S, Barranco A. 2019. Microplastics, a food safety issue?. Trends Food Sci Technol 84: 55-57. DOI: 10.1016/j.tifs.2018.12.009.
Rani-Borges B, Arena MVN, Gomes IN, Lins L, Cestaro LSC, Pompêo M, Ando RA, Alves-dos-Santos I, Toppa RH, Martines MR, Queiroz LG. 2024. More than just sweet: Current insights into microplastics in honey products and a case study of Melipona quadrifasciata honey. Environ Sci Process Impacts 26: 2132-2144. DOI: 10.1039/d4em00262h.
Sanders LC, Lord EM. 1989. Directed movement of latex particles in the gynoecia of three species of flowering plants. Science 243 (4898): 1606-1608. DOI: 10.1126/science.243.4898.1606.
Vidyasakar A, Krishnakumar S, Kumar KS, Neelavannan K, Anbalagan S, Kasilingam K, Srinivasalu S, Saravanan P, Kamaraj S, Magesh NS. 2021. Microplastic contamination in edible sea salt from the largest salt-producing states of India. Mar Pollut Bull 171: 112728. DOI: 10.1016/j.marpolbul.2021.112728.
Wang K, Li J, Zhao L, Mu X, Wang C, Wang M, Wu L. 2021. Gut microbiota protects honey bees (Apis mellifera L.) against polystyrene microplastic exposure risks. J Hazard Mater 402: 123828. DOI: 10.1016/j.jhazmat.2020.123828.
Ziani K, Ionita-Mindrican CB, Mititelu M, Neacsu SM, Negrei C, Morosan E, Draganescu D, Preda OT. 2023. Microplastics: A real global threat for environment and food safety: A state of the art review. Nutrients 15 (3): 617. DOI: 10.3390/nu15030617.
Zhang S, Wang J, Liu X, Qu F, Wang X, Wang X, Li Y, Sun Y. 2019. Microplastics in the environment: A review of analytical methods, distribution, and biological effects. TrAC Trends Anal Chem 111: 62-72. DOI: 10.1016/j.trac.2018.12.002.