Characterization of the genetic diversity of Chenopodium quinoa from the Department of Boyacá-Colombia using microsatellite markers

##plugins.themes.bootstrap3.article.main##

ELSA HELENA MANJARRES-HERNÁNDEZ
https://orcid.org/0000-0001-6221-8636
ANA CRUZ MORILLO-CORONADO
YACENIA MORILLO-CORONADO
https://orcid.org/0000-0003-1974-3464

Abstract

Abstract. Manjarres-Hernández EH, Morillo-Coronado AC, Morillo-Coronado Y. 2025. Characterization of the genetic diversity of Chenopodium quinoa from the Department of Boyacá-Colombia using microsatellite markers. Biodiversitas 26: 1239-1246. Chenopodium quinoa is an Andean pseudocereal with excellent nutritional, pharmaceutical and industrial properties. In Colombia, this crop is considered marginal, and genetic studies are limited. The objective of this study was to characterize the genetic diversity present in 81 quinoa accessions from the Department of Boyacá using 13 microsatellite markers. Through the analysis of population structure, three populations developed, with an average expected heterozygosity of 0.472. The fixation indices in these three populations were less than 0.233, showing that there is no differentiation between the general population and the subpopulations. Analysis of molecular variance (AMOVA) showed that most of the genetic variation is found within populations (87%). The 13 microsatellites evaluated were highly informative, producing 42 alleles, which ranged from 2 to 4 per locus with an average of 3.051 alleles per locus. The microsatellites with the highest numbers of alleles were the KAAT037 and KGA03 loci (A=4,333). The values of expected heterozygosity (He) were lower than that observed (Ho), with an average of He=0.472. Both Fis and Fit confirmed a high number of heterozygotes compared to Hardy-Weinberg equilibrium conditions. Thus, microsatellite markers allowed genotypes to be differentiated according to morphological characteristics more than their origin. The findings of this study highlight the existence of significant genetic diversity in the quinoa accessions studied, which could be used in conservation and genetic improvement programs of this species.

##plugins.themes.bootstrap3.article.details##

References
Abd El-Moneim D, ELsarag EIS, Aloufi S, El-Azraq AM, ALshamrani SM, Safhi FAA, Ibrahim AA. 2021. Quinoa (Chenopodium quinoa Willd.): Genetic diversity according to ISSR and SCoT markers, relative gene expression, and morpho-physiological variation under salinity stress. Plants 10 (12): 2802. DOI: 10.3390/plants10122802.
Ain QT, Siddique K, Bawazeer S, Ali I, Mazhar M, Rasool R, Mubeen R, Ullah F, Unar A, Jafar TH. 2023. Adaptive mechanisms in quinoa for coping in stressful environments: An update. PeerJ 11: e14832. DOI: 10.7717/peerj.14832.
Alandia G, Rodriguez JP, Jacobsen SE, Bazile D, Condori B. 2020. Global expansion of quinoa and challenges for the Andean region. Glob Food Secur 26: 100429. DOI: 10.1016/j.gfs.2020.100429.
Almeida?Rocha JM, Soares LA, Andrade ER, Gaiotto FA, Cazetta E. 2020. The impact of anthropogenic disturbances on the genetic diversity of terrestrial species: A global meta?analysis. Mol Ecol 29 (4): 4812-4822. DOI: 10.1111/mec.15688.
Anuradha, Kumari M, Zinta G, Chauhan R, Kumar A, Singh S, Singh S. 2023. Genetic resources and breeding approaches for improvement of amaranth (Amaranthus spp.) and quinoa (Chenopodium quinoa). Front Nutr 10: 1129723. DOI: 10.3389/fnut.2023.1129723.
Barut M, Nadeem MA, Karakoy T, Baloch FS. 2020. DNA fingerprinting and genetic diversity analysis of world quinoa germplasm using iPBS-retrotransposon marker system. Turk J Agric For 44 (5): 479-491. DOI: 10. 3906/tar-2001-10.
Bolton PE, West AJ, Cardilini AP, Clark JA, Maute KL, Legge S, Rollins LA. 2016. Three molecular markers show no evidence of population genetic structure in the Gouldian finch (Erythrura gouldiae). PLoS One 11 (12): e0167723. DOI: 10.1371/journal.pone.0167723.
Castañeda CC, Morillo-Coronado Y, Morillo-Coronado AC. 2020. Assessing the genetic diversity of Dioscorea alata and related species from Colombia through inter-simple sequence repeat (ISSR) markers. Chil J Agric Res 80 (4): 608-616. DOI: 10.4067/S0718-58392020000400608.
Costa JL, Jesus OND, Oliveira GAF, Oliveira EJD. 2014. Effect of selection on genetic variability in yellow passion fruit. Crop Breed Appl Biotechnol 12: 253-260. DOI: 10.1590/S1984-70332012000400004.
El-Harty EH, Ghazy A, Alateeq TK, Al-Faifi SA, Khan MA, Afzal M, Alghamdi SS, Migdadi, HM. 2021. Morphological and molecular characterization of quinoa genotypes. Agriculture 11 (4): 286. DOI: 10.3390/agriculture11040286.
Flórez?Martínez DH, Rodríguez?Cortina J, Chávez?Oliveros LF, Aguilera?Arango GA, Morales?Castañeda, A. 2024. Current trends and prospects in quinoa research: An approach for strategic knowledge areas. Food Sci Nutr 12 (3): 1479-1501. DOI: 10.1002/fsn3.3891.
García-Parra M, Zurita-Silva A, Stechauner-Rohringer R, Roa-Acosta D, Jacobsen SE. 2020. Quinoa (Chenopodium quinoa Willd.) and its relationship with agroclimatic characteristics: A Colombian perspective. Chil J Agric Res 80 (2): 290-302. DOI: 10.4067/S0718-58392020000200290.
Habib Z, Ijaz S, Haq IU, Hashem A, Avila-Quezada GD, Abd-Allah EF, Khan NA. 2024. Empirical phenotyping and genome-wide association study reveal the association of panicle architecture with yield in Chenopodium quinoa. Front Microbiol 15: 1349239. DOI: 10.3389/fmicb.2024.1349239.
Jarvis DE, Kopp OR, Jellen EN, Mallory MA, Pattee J, Bonifacio A, Coleman CE, Stevens MR, Fairbanks DJ, Maughan PJ. 2008. Simple sequence repeat marker development and genetic mapping in quinoa (Chenopodium quinoa Willd.). J Genet 87: 39-51. DOI: 10.1007/s12041-008-0006-6.
Manjarres-Hernández EH, Arias-Moreno DM, Morillo-Coronado AC, Ojeda-Pérez ZZ, Cárdenas-Chaparro A. 2021. Phenotypic characterization of quinoa (Chenopodium quinoa Willd.) for the selection of promising materials for breeding programs. Plants 10 (7): 1339. DOI: 10.3390/plants10071339.
Manjarres-Hernández EH, Morillo-Coronado AC. 2022. Genetic diversity of Colombian quinoa (Chenopodium quinoa Willd.): Implications for breeding programs. Genet Resour Crop Evol 69 (7): 2447-2458. DOI: 10.1007/s10722-022-01383-w.
Mason SL, Stevens MR, Jellen EN, Bonifacio A, Fairbanks DJ, Coleman CE, McCarty RR, Rasmussen AG, Maughan PJ. 2005. Development and use of microsatellite markers for germplasm characterization in quinoa (Chenopodium quinoa Willd.). Crop Sci 45 (4): 1618-1630. DOI: 10.2135/cropsci2004.0295.
Morillo-Coronado AC, Castro MA, Manjarres EH. 2023. Interpopulation characterization of quinoa (Chenopodium quinoa Willd.) from different agroecological environments of Colombia. Braz J Biol 83: e271954. DOI: 10.1590/1519-6984.271954.
Morillo-Coronado AC, Manjarres EH, Morillo-Coronado Y, Mendoza, LA. 2021. Una mirada al cultivo de la quinua en el departamento de Boyacá. (eds). Molecular characterization of germplasm, Universidad Pedagógica y Tecnológica de Colombia-UPTC, Tunja, Colombia. DOI: 10.19053/9789586605281.
Morillo-Coronado AC, Manjarres EH, Reyes W, Morillo-Coronado Y. 2020. Molecular characterization of intrapopulation genetic diversity in Chenopodium quinoa (Chenopodiaceae). Genet Mol Res 19 (77): GMR18667. DOI: 10.4238/gmr18667.
Morillo-Coronado AC, Manjarres EH, Reyes, W, Morillo-Coronado Y. 2022. Phenotypic intrapopulation variation in quinoa from the Department of Boyacá, Colombia. Revista UDCA Actualidad & Divulgación Científica 25 (1): e1579. DOI: 10.31910/rudca.v25.n1.2022.1579.
Muñoz JE, Morillo A, Morillo-Coronado Y. 2008. Random Amplied Microsatellite (RAMs) in studies of plant genetic diversity. Acta Agronómica 57: 219-226.
Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155 (2): 945-959. DOI: 10.1093/genetics/155.2.945.
Pulvento C, Bazile D. 2023. Worldwide evaluations of quinoa-biodiversity and food security under climate change pressures: Advances and perspectives. Plants 12 (4): 868. DOI: 10.3390/plants12040868.
Romero M, Mujica A, Pineda E, Camapaza Y, Zavalla N. 2019. Genetic identity based on simple sequence repeat (SSR) markers for quinoa (Chenopodium quinoa Willd.). Ciencia e Investigación Agraria: Revista Latinoamericana de Ciencias de la Agricultura 46 (2): 166-168. DOI: 10.7764/rcia.v45i2.2144.
Salazar J, de Lourdes-Torres M, Gutierrez B, Torres AF. 2019. Molecular characterization of Ecuadorian quinoa (Chenopodium quinoa Willd.) diversity: Implications for conservation and breeding. Euphytica 215: 60. DOI: 10.1007/s10681-019-2371-z.
Souri-Laki E, Rabiei B, Marashi H, Jokarfard V, Börner A. 2024. Association study of morpho-phenological traits in quinoa (Chenopodium quinoa Willd.) using SSR markers. Sci Rep 14 (1): 5991. DOI: 10.1038/s41598-024-56587-0.
Stanschewski CS, Rey E, Fiene G et al. 2021. Quinoa Phenotyping Consortium. Quinoa phenotyping methodologies: An international consensus. Plants 10 (9): 1759. DOI: 10.3390/plants10091759.
Subedi M, Neff E, Davis TM. 2021. Developing Chenopodium ficifolium as a potential B genome diploid model system for genetic characterization and improvement of allotetraploid quinoa (Chenopodium quinoa). BMC Plant Biol 21 (1): 490. DOI: 10.1186/s12870-021-03270-5.
Trotsenko VI, Melnyk AV, Trotsenko NV. 2020. Study of basic characteristics of quinoa seeds. Bull Sumy Natl Agrarian Univ. Ser: Agron Biol 39: 71-77. DOI: 10.32782/agrobio.2020.1.9.
Veloza C, Romero-Guerrero G, Gómez JJ. 2016. Morphoagronomic response and protein quality of three accessions of quinoa (Chenopodium quinoa Willd.) in the northern Sabana of Bogotá. Revista UDCA Actualidad & Divulgación Científica 19: 325-332.
Zhang T, Gu M, Liu Y, LV Y, Zhou L, Lu H, Zhao H. 2017. Development of novel InDel markers and genetic diversity in Chenopodium quinoa through whole-genome re-sequencing. BMC Genomics 18 (1): 685. DOI: 10.1186/s12864-017-4093-8.