Evaluating the potential of gut bacteria in Oryctes rhinoceros larvae as biocontrol agents against Ganoderma boninense pathogen in oil palm plantations

##plugins.themes.bootstrap3.article.main##

ROSFINA LORENSI BR SURBAKTI
MARHENI
DARMA BAKTI

Abstract

Abstract. Surbakti RLB, Marheni, Bakti D. 2025. Evaluating the potential of gut bacteria in Oryctes rhinoceros larvae as biocontrol agents against Ganoderma boninense pathogen in oil palm plantations. Biodiversitas 26: 1414-1413. Oil palm (Elaeis guineensis) is one of the important commodities in Indonesia. One of the plant pest and disease organisms that inhibit the growth of oil palm productivity is the Ganoderma boninense pathogen and the rhino pest insect (Oryctes rhinoceros). Insects have diverse and abundant microbes in their gut systems. Therefore, a comprehensive understanding of the function of gut bacteria in multispecies interactions may not only lead to the discovery of new resources for biocontrol but could also facilitate the development of new biopesticides. The larval stage of O. rhinoceros consumes empty oil palm fruit bunches to grow and develop into pupae. Various types of symbiont bacteria can be found in one type of insect. These bacteria are known to produce several hydrolase enzymes such as amylase, cellulase, protease, lipase, and chitinase. This study aimed to identify bacteria from the intestines of O. rhinoceros larvae and determine their potential to inhibit the growth of G. boninense, which causes stem rot disease in oil palm plants in vitro. This research was conducted at the Disease Laboratory, Faculty of Agriculture, University of Sumatera Utara, PT. Genetics Science Indonesia, Tangerang, between April - September 2024. The methods used include morphological identification of the isolate and physiological, biochemical, and molecular identification of the bacteria using 16s rRNA gene sequencing and PCR (Polymerase Chain Reaction), as well as antagonist tests and hydrolysis tests for chitinase, protease, and cellulase enzymes. In this study, two bacterial isolates capable of inhibiting the growth of G. boninense in vitro were identified; isolate BS1, identified as Bacillus stercoris, with an inhibition rate of 42.14%, and isolate BS2, identified as Pseudomonas aeruginosa, with an inhibition rate of 63.68%.

##plugins.themes.bootstrap3.article.details##

References
Ajuna HB, Kim I, Han YS, Maung CEH, Kim KY. 2021. Aphicidal activity of Bacillus thuringiensis strain AH?2 against cotton aphid (Aphis gossypii). Entomol Res 51 (4): 151-160. DOI: 10.1111/1748-5967.12481.
Barbosa KL, Dos Santos Malta VR, Machado SS, Leal Junior GA, da Silva APV, Almeida RMRG, da Luz JMR. 2020. Bacterial cellulase from the intestinal tract of the sugarcane borer. Intl J Biol Macromol 161: 441-448. DOI: 10.1016/j.ijbiomac.2020.06.042.
Barcelos E, de Almeida Rios S, Cunha RNV, Lopes R, Motoike SY, Babiychuk E, Skirycz A, Kushnir S. 2015. Oil palm natural diversity and the potential for yield improvement. Front Plant Sci 6: 190. DOI: 10.3389/fpls.2015.00190.
Batubara UM, Mardalisa M, Suparjo S, Maritsa HU, Pujianto E, Herlini M. 2021. Isolation and characterization of cellulolytic bacteria diversity in Peatland ecosystem and their cellulolytic activities. IOP Conf Ser: Earth Environ Sci 934: 012028. DOI: 10.1088/1755-1315/934/1/012028.
Cappuccino JG, Welsh CT. 2017. Microbiology: A Laboratory Manual. Pearson Education, London, England.
Cornwallis CK, van't Padje A, Ellers J, Klein M, Jackson R, Kiers ET, West SA, Henry LM. 2023. Symbiont-driven niche expansion shapes the adaptive radiation of insects. Res Square 2022: 1-101. DOI: 10.21203/rs.3.rs-1804614/v1.
Elfina Y, Sukendi S, Efriyeldi E, Sutikno A. 2024. Uji kemampuan Bacillus spp. dalam menghambat Ganoderma boninense Pat. penyebab penyakit busuk pangkal batang kelapa sawit secara in vitro. Agro Bali: Agric J 7: 575-590. DOI: 10.37637/ab.v7i2.1816. [Indonesian]
Evizal R, Wibowo L, Novpriasyah H, Sarno, Sari RY, Prasmatiwi FE. 2020. Keragaan agronomi tanaman kelapa sawit pada cekaman kering periodik. J Trop Upland Resour 2 (1): 60-68. DOI: 10.23960/jtur.vol2no1.2020.79. [Indonesian]
Gebreyohans G, Batu NI, Muche T, Kalayou N, Bacha K, Gershe S, Ango Z. 2024. Isolation and identification of major cockroaches associated pathogenic bacteria in Bonga town, Ethiopia. Microbe 5: 100158. DOI: 10.1016/j.microb.2024.100158.
Gonfa TG, Negessa AK, Bulto AO. 2023. Isolation, screening, and identification of chitinase-producing bacterial strains from riverbank soils at Ambo, Western Ethiopia. Heliyon 9 (11): e21643. DOI: 10.1016/j.heliyon.2023.e21643.
Hamzah A, Saputra R, Puspita F, Nasrul B, Irfandri I, Depari NS. 2021. Ganoderma diversity from smallholder oil palm plantations in peatlands of Kampar District, Indonesia based on mycelia morphology and somatic incompatibility. Biodiversitas 22 (1): 16-22. DOI: 10.13057/biodiv/d220103.
Hengkengbala SI, Lintang RAJ, Sumilat DA, Mangindaan REP, Ginting EL, Tumembouw S. 2021. Karakteristik morfologi dan aktivitas enzim protease bakteri simbion Nudibranch. Jurnal Pesisir dan Laut Tropis 9 (3): 83-94. DOI: 10.35800/jplt.9.3.2021.36672. [Indonesian]
Khatoon H, Anokhe A, Kalia V. 2022. Catalase test: A biochemical protocol for bacterial identification. AgriCos e-Newsletter 3: 53-55.
Kurniawan O, Wilson K, Mohamed R, Avis TJ. 2018. Bacillus and Pseudomonas spp. provide antifungal activity against gray mold and Alternaria rot on blueberry fruit. Biol Control 126: 136-141. DOI: 10.1016/j.biocontrol.2018.08.001.
Lee SH, Jeon SH, Park JY, Kim DS, Kim JA, Jeong HY, Kang JW. 2023. Isolation and evaluation of the antagonistic activity of Cnidium officinale rhizosphere bacteria against phytopathogenic fungi (Fusarium solani). Microorganisms 11 (6): 1555. DOI: 10.3390/microorganisms11061555.
Marheni M, Martono E, Sijabat OS. 2021. Exploration of symbiotic bacteria of Oryctes rhinoceros (Coleoptera: Scarabaeidae) larvae from oil palm empty fruit bunches. Agrivita J Agric Sci 43 (1): 190-197. DOI: 10.17503/agrivita.v43i1.2301.
Mi?ek J, Lamkiewicz J. 2022. The starch hydrolysis by ?-amylase Bacillus spp.: An estimation of the optimum temperatures, the activation and deactivation energies. J Therm Anal Calorim 147 (24): 14459-14466. DOI: 10.1007/s10973-022-11738-1.
Moore A, Barahona DC, Lehman KA, Skabeikis DD, Iriarte IR, Jang EB, Siderhurst MS. 2017. Judas beetles: Discovering cryptic breeding sites by radio-tracking coconut rhinoceros beetles, Oryctes rhinoceros (Coleoptera: Scarabaeidae). Environ Entomol 46 (1): 92 99. DOI: 10.1093/ee/nvw152.
Mortezaei M, Dadmehr M, Korouzhdehi B, Hakimi M, Ramshini H. 2021. Colorimetric and label free detection of gelatinase positive bacteria and gelatinase activity based on aggregation and dissolution of gold nanoparticles. J Microbiol Methods 191: 106349. DOI: 10.1016/j.mimet.2021.106349.
Priwiratama H, Prasetyo AE, Susanto A. 2020. Incidence of basal stem rot disease of oil palm in converted planting areas and control treatments. IOP Conf Ser: Earth Environ Sci 468 (1): 012036. DOI: 10.1088/1755-1315/468/1/012036.
Syukri DM, Singh S, Nwabor OF, Ontong JC, Dejyong K, Sunghan J, and Voravuthikunchai SP. 2024. Prevention of post-operative bacterial colonization on mice buccal mucosa using biogenic silver nanoparticles-coated nylon sutures. Reg Eng Transl Med 10 (2): 294-308. DOI: 10.1007/s40883-024-00335-3.
Tariq S, Roohi S, Zahoor R, Iqbal Z, Haider I. 2012. Development of vitamin D3 HPLC method and its application in blood serum analysis of workers of radiation area. J Liq Chrom Rel Technol 35 (19): 2765-2776. DOI: 10.1080/10826076.2011.639113.
Trung NT, Cuong NT, Thao NT, Anh DTM, Tuyen DT. 2020. Elucidation and identification of an antifungal compound from Pseudomonas aeruginosa DA3. 1 isolated from soil in Vietnam. Jundishapur J Microbiol 13 (10): e103792. DOI: 10.5812/jjm.103792.
Wang W, Zhao J, Zhang Z. 2022. Bacillus metabolites: Compounds, identification and anti-Candida albicans mechanism. Microbiol Res 13 (4): 972- 984. DOI: 10.3390/microbiolres13040070.
Wulandari D, Purwaningsih D. 2019. Identifikasi dan karakterisasi bakteri amilolitik pada umbi Colocasia esculenta L. secara morfologi, biokimia, dan molekuler. Jurnal Bioteknologi dan Biosains Indonesia 6 (2): 247-258. DOI: 10.29122/jbbi.v6i2.3084. [Indonesian]
Zhang Y, Zhang S, Xu L. 2023. The pivotal roles of gut microbiota in insect plant interactions for sustainable pest management. NPJ Biofilms Microbiomes 9 (1): 66. DOI: 10.1038/s41522-023-00435-y.
Živkovi? S, Stojanovi? S, Ivanovi? Ž, Gavrilovi? V, Popovi? T, Balaž J. 2010. Screening of antagonistic activity of microorganisms against Colletotrichum acutatum and Colletotrichum gloeosporioides. Arch Biol Sci 62 (3): 611-623. DOI: 10.2298/ABS1003611Z.